PHY2003 Modern PhysicsBahçeşehir UniversityDegree Programs ARCHITECTUREGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARCHITECTURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
PHY2003 Modern Physics Spring
Fall
3 0 3 4
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. MUHAMMED AÇIKGÖZ
Recommended Optional Program Components: None
Course Objectives: To introduce the fundamentals of relativity, Quantum physics, atomic physics and nuclear physics.

Learning Outcomes

The students who have succeeded in this course;
The students who succeeded in this course;
will be able to understand the special theory of relativity.
will be able to formulate the Lorentz transformation equations.
will be able to formulate relativistic linear momentum and energy.
will be able to discriminate Quantum physics from classical physics.
will be able to formulate wave mechanics.
will be able to apply Schrödinger equation to some applications.
will be able to learn the elementary concepts of Quantum physics.
will be able to define hydrogen atom concept in Quantum physics.
will be able to apply quantum theory to nuclear structure.
will be able to discriminate nuclear reactions; fission and fusion.
will be able to apply quantum theory to nuclear reactions.
will be able to apply quantum theory to elementary particles and their interactions.

Course Content

In this course theory of relativity; the Lorentz transformation equations; basics of Quantum mechanics; Schrödinger equation; principles of the atomic physics and nuclear physics will be taught.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Modern Physics, and Theory of Relativity.
2) Theory of Relativity.
3) Quantum Theory of Light; Introduction to the theory and results of waves.
4) Quantum Physics; The beginnings of quantum theory
5) Quantum Physics; A basic introduction to quantum mechanics and wave mechanics.
6) Quantum Physics; probabilities and normalization; SHO
7) Schrödinger Equation and Quantum Mechanics
8) Atomic Physics; atomic structure
9) Atomic Physics; molecular structure
10) Nuclear Physics; Nuclear structure and Nuclear binding energy, nuclear force, radioactivity
11) Nuclear Physics applications; Nuclear reactions; fission and fusion; Radiation detectors and applications
12) Selected Topics
13) Selected Topics
14) Selected Topics

Sources

Course Notes / Textbooks: 1) Physics for Scientists and Engineers, eighth editions (2010) by John W. Jewett, Jr. and Raymond A. SERWAY, BROOKS/COLE CENGACE learning.
2) Physics for Scientists and Engineers with Modern Physics, sixth editions (2006) by Raymond A. SERWAY and John W. Jewett, Jr., Brooks/Cole- Thomson Learning.
References: 1) Physics, Principles with applications, 5th edition (1998) by Douglas C. GIANCOLI, Prentice Hall, Upper Saddle River, New Jersey 07458
2) Fundamentals of Physics, 5th edition (1997) by David HALLIDAY, Robert RESNICK and Jearl WALKER, John Wiley &Sons. Inc. New York.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 2 % 10
Midterms 1 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 2 28
Midterms 1 14 14
Final 1 16 16
Total Workload 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Using the theoretical/conceptual and practical knowledge acquired for architectural design, design activities and research.
2) Identifying, defining and effectively discussing aesthetic, functional and structural requirements for solving design problems using critical thinking methods.
3) Being aware of the diversity of social patterns and user needs, values and behavioral norms, which are important inputs in the formation of the built environment, at local, regional, national and international scales.
4) Gaining knowledge and skills about architectural design methods that are focused on people and society, sensitive to natural and built environment in the field of architecture.
5) Gaining skills to understand the relationship between architecture and other disciplines, to be able to cooperate, to develop comprehensive projects; to take responsibility in independent studies and group work.
6) Giving importance to the protection of natural and cultural values in the design of the built environment by being aware of the responsibilities in terms of human rights and social interests.
7) Giving importance to sustainability in the solution of design problems and the use of natural and artificial resources by considering the social, cultural and environmental issues of architecture.
8) Being able to convey and communicate all kinds of conceptual and practical thoughts related to the field of architecture by using written, verbal and visual media and information technologies.
9) Gaining the ability to understand and use technical information about building technology such as structural systems, building materials, building service systems, construction systems, life safety.
10) Being aware of legal and ethical responsibilities in design and application processes.