CET2052 Human-Computer InteractionBahçeşehir UniversityDegree Programs BIOMEDICAL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
BIOMEDICAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CET2052 Human-Computer Interaction Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YAVUZ SAMUR
Course Lecturer(s): Dr. Öğr. Üyesi ÖZGÜR ERKUT ŞAHİN
Recommended Optional Program Components: There is no recommended optional program component.
Course Objectives: To introduce principles of human-computer interaction and usability of interafce design. Conducting usability testing and reporting results

Learning Outcomes

The students who have succeeded in this course;
o Identify fundamental design principles of human-computer interaction,
o Explain analysis, design and evaluation principles of human-computer interaction,
o Explain usability testing methods,
o Evaluate the software by conducting usability test.

Course Content

Computer-human interface designs: principles, types, models; human factors: ergonomics, physiological issues, cognitive processing, task analysis, hardware; evaluations: usability, surveys, ethnographic; practical examples; data visualization.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction and Theoretical Foundations : Introduction to HCI, Human, Interaction and Computer Chapter 1, 2 and 3: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
2) Introduction and Theoretical Foundations : Software Life Cycle and HCI, Project Planning, Analysis, Design and Evaluation Chapter 1-3: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
3) Interaction design basics Chapter 5: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
4) Design rules & usability Chapter 7: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
5) Design Process and Evaluation Optimizing the User Experience Accessibility Hardware & Software Chapter 1-4: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
6) The Homepage Page Layout Navigation Scrolling and Paging Chapter 5-8: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
7) Headlines, Titles, and Labels Links Text Appearance Lists Screen-based Controls (Widgets) Chapter 9-13: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
8) Graphics, Images and Multimedia Writing Web Content Content Organization Search Chapter 14-17: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
9) Ergonomics
10) Usability & Mobile Usability
11) Usability Testing Metrics and Methods
12) Usability Testing Metrics and Methods
13) Usability testing
14) Usability testing

Sources

Course Notes / Textbooks: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration. [http://www.usability.gov/pdfs/guidelines.html]”
“Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall. [http://www.hcibook.com/e3/] “
References: Zaphiris, P. & Kurniawan, S. (2007). Human-Computer Interaction Research in Web Design and Evaluation. London: IDEA Group Pub.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 16 % 10
Project 1 % 40
Midterms 1 % 20
Final 1 % 30
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge of subjects specific to mathematics (analysis, linear, algebra, differential equations, statistics), science (physics, chemistry, biology) and related engineering discipline, and the ability to use theoretical and applied knowledge in these fields in complex engineering problems.
2) Identify, formulate, and solve complex Biomedical Engineering problems; select and apply proper modeling and analysis methods for this purpose
3) Design complex Biomedical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Biomedical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or physical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Biomedical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Biomedical Engineering-related problems.
7) Ability to communicate effectively in Turkish, oral and written, to have gained the level of English language knowledge (European Language Portfolio B1 general level) to follow the innovations in the field of Biomedical Engineering; gain the ability to write and understand written reports effectively, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Having knowledge for the importance of acting in accordance with the ethical principles of biomedical engineering and the awareness of professional responsibility and ethical responsibility and the standards used in biomedical engineering applications
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Biomedical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Biomedical Engineering; is aware of the legal consequences of Mechatronics engineering solutions.