CET2052 Human-Computer InteractionBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CET2052 Human-Computer Interaction Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YAVUZ SAMUR
Course Lecturer(s): Dr. Öğr. Üyesi ÖZGÜR ERKUT ŞAHİN
Recommended Optional Program Components: There is no recommended optional program component.
Course Objectives: To introduce principles of human-computer interaction and usability of interafce design. Conducting usability testing and reporting results

Learning Outcomes

The students who have succeeded in this course;
o Identify fundamental design principles of human-computer interaction,
o Explain analysis, design and evaluation principles of human-computer interaction,
o Explain usability testing methods,
o Evaluate the software by conducting usability test.

Course Content

Computer-human interface designs: principles, types, models; human factors: ergonomics, physiological issues, cognitive processing, task analysis, hardware; evaluations: usability, surveys, ethnographic; practical examples; data visualization.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction and Theoretical Foundations : Introduction to HCI, Human, Interaction and Computer Chapter 1, 2 and 3: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
2) Introduction and Theoretical Foundations : Software Life Cycle and HCI, Project Planning, Analysis, Design and Evaluation Chapter 1-3: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
3) Interaction design basics Chapter 5: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
4) Design rules & usability Chapter 7: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
5) Design Process and Evaluation Optimizing the User Experience Accessibility Hardware & Software Chapter 1-4: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
6) The Homepage Page Layout Navigation Scrolling and Paging Chapter 5-8: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
7) Headlines, Titles, and Labels Links Text Appearance Lists Screen-based Controls (Widgets) Chapter 9-13: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
8) Graphics, Images and Multimedia Writing Web Content Content Organization Search Chapter 14-17: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
9) Ergonomics
10) Usability & Mobile Usability
11) Usability Testing Metrics and Methods
12) Usability Testing Metrics and Methods
13) Usability testing
14) Usability testing

Sources

Course Notes / Textbooks: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration. [http://www.usability.gov/pdfs/guidelines.html]”
“Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall. [http://www.hcibook.com/e3/] “
References: Zaphiris, P. & Kurniawan, S. (2007). Human-Computer Interaction Research in Web Design and Evaluation. London: IDEA Group Pub.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 16 % 10
Project 1 % 40
Midterms 1 % 20
Final 1 % 30
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.