CET2052 Human-Computer InteractionBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CET2052 Human-Computer Interaction Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YAVUZ SAMUR
Course Lecturer(s): Dr. Öğr. Üyesi ÖZGÜR ERKUT ŞAHİN
Recommended Optional Program Components: There is no recommended optional program component.
Course Objectives: To introduce principles of human-computer interaction and usability of interafce design. Conducting usability testing and reporting results

Learning Outcomes

The students who have succeeded in this course;
o Identify fundamental design principles of human-computer interaction,
o Explain analysis, design and evaluation principles of human-computer interaction,
o Explain usability testing methods,
o Evaluate the software by conducting usability test.

Course Content

Computer-human interface designs: principles, types, models; human factors: ergonomics, physiological issues, cognitive processing, task analysis, hardware; evaluations: usability, surveys, ethnographic; practical examples; data visualization.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction and Theoretical Foundations : Introduction to HCI, Human, Interaction and Computer Chapter 1, 2 and 3: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
2) Introduction and Theoretical Foundations : Software Life Cycle and HCI, Project Planning, Analysis, Design and Evaluation Chapter 1-3: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
3) Interaction design basics Chapter 5: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
4) Design rules & usability Chapter 7: “Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall.”
5) Design Process and Evaluation Optimizing the User Experience Accessibility Hardware & Software Chapter 1-4: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
6) The Homepage Page Layout Navigation Scrolling and Paging Chapter 5-8: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
7) Headlines, Titles, and Labels Links Text Appearance Lists Screen-based Controls (Widgets) Chapter 9-13: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
8) Graphics, Images and Multimedia Writing Web Content Content Organization Search Chapter 14-17: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration.”
9) Ergonomics
10) Usability & Mobile Usability
11) Usability Testing Metrics and Methods
12) Usability Testing Metrics and Methods
13) Usability testing
14) Usability testing

Sources

Course Notes / Textbooks: “Leavitt, M.O. & Shneiderman, B. (2006). Research-Based Web Design & Usability Guidelines. U.S. Department of Health & Human Services & U.S. General Services Administration. [http://www.usability.gov/pdfs/guidelines.html]”
“Dix, A., Finlay, J., Abowd, G. & Beale, R. (2004). Human-Computer Interaction (3rd Edt.), USA: Prentice Hall. [http://www.hcibook.com/e3/] “
References: Zaphiris, P. & Kurniawan, S. (2007). Human-Computer Interaction Research in Web Design and Evaluation. London: IDEA Group Pub.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 16 % 10
Project 1 % 40
Midterms 1 % 20
Final 1 % 30
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.