ARC1023 Introduction to Architectural CultureBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ARC1023 Introduction to Architectural Culture Spring 2 0 2 4
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. SEMA ESEN SOYGENİŞ
Course Lecturer(s): Dr. Öğr. Üyesi BERNA YAYLALI
Prof. Dr. SEMA ESEN SOYGENİŞ
Recommended Optional Program Components: None
Course Objectives: The objective is to develop an understanding of architectural culture; principles of architectural design, construction, materials and context. The emphasis is on space, form, technology and materials characterized by particular ways of thinking, embedded in human culture.

Learning Outcomes

The students who have succeeded in this course;
Students who have succeeded in this course;

-Ability to read, write, speak and listen effectively
-Understanding of the diverse needs, values, behavioural norms, physical abilities, and social and spatial patterns that characterize different cultures and individuals and the implication of this diversity on the societal roles and responsibilities of architects.
-Understanding of the architect’s responsibility to work in the public interest, to respect historic resources, and to improve the quality of life for local and global neighbours.
-Understanding of the relationship between human behaviour, the natural environment and the design of the built environment.

Course Content

This course discusses architecture and architectural culture in the context of principles of architecture.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction / Scope of the Course
2) Discussion: What is Architecture?
3) History and Theory of Architecture Architecture as a Profession / Means of Communication
4) Architecture/Space/Structure/Enclosure
5) Architecture/Geometry
6) Space / Form and Order
7) Aesthetics/Proportion and Scale in Architecture
8) Mid-Term Exam
9) Space and Light
10) Architecture and Function
11) Architecture and Movement /Circulation / Promenade
12) Architecture Structure / Materials
13) Architecture/Context
14) Discussion

Sources

Course Notes / Textbooks: NA
References: -Arnhime R., Dynamics of Architectural Form, Berkeley, 1977
-Baker G.H., Design Strategies in Architecture.An Analysis of Form,VNR, New York, 1996
-Burden E., Elements of Architectural Design: A Visual Resource, VNR, New York, 1995
-Ching F., Architecture: Form Space and Order, VNR, New York, 1996
-Ching F., Interior Design, VNR, NY, 1987.
-Clark R., Presidents in Architecture, VNR,NY, 1985.
-Conway H., Understanding Architecture, Routledge, London, 1994.
-Giedion S., Space, Time and Architecture, Harvard U Press, 1982.
-Farrelly, L., The Fundamentals of Architecture, Academia, Singapore, 2007
-Farrelly, L. (Construction +Materiality/AVA Publishing) Yapım + Malzeme, Literatür, İstanbul,2012
-Kuban D., Mimarlık Kavramları, Yem Yayın, 4. Baskı, İstanbul, 1992.
-Palmer J., Dodson M., Design and Aesthetics, Routledge, NY, 1996
-Rasmussen, S.E., Experiencing Architecture, The MIT Press,Cambridge, 1982.
-Rapoport, A., House Form and Culture,Prentice Hall NJ, 1969
-Rudofsky, B., The Prodigious Builders, HBJ,USA, 1977
-Smithies K.W., Principles of Design in Architecture, VNR, New York, 1981
-Soygeniş, S., Mimarlık- Düşünmek, Düşlemek, Yapı Yayın, İstanbul, 2006
-Soygeniş,S.,M., İstanbul-An Urban Commentary, Birsen Yayın, Istanbul, 2006
-Unwin S., Analysing Architecture, Routledge, New York, 1997

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 0
Application 5 % 10
Homework Assignments 5 % 20
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 12 2 24
Study Hours Out of Class 7 9 63
Homework Assignments 5 2 10
Midterms 1 2 2
Final 1 2 2
Total Workload 101

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.