SEN4531 Unix ProgrammingBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN4531 Unix Programming Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. MEHMET ALPER TUNGA
Recommended Optional Program Components: None.
Course Objectives: The students will have the ability of developing BASH scripts for systems programming in UNIX and UNIX based operating systems with the help of various tools such as grep, awk and sed. The course also provides the students with the other UNIX programming utilities such as socket programming, writing manuals and creating packages.

Learning Outcomes

The students who have succeeded in this course;
1. Define of basic concepts and categories of operating systems and UNIX
2. Use basic commands of Unix
3. Describe the concept of grep, awk and sed
4. Describe the Unix and shell environment and fundamentals of shell programming in Unix
5. Define the basic structures such as loops, control structures of BASH and developing system programming scripts through BASH
6. Prepare makefiles in Unix environment
7. Describe the fundamentals of Gnome programming
8. Create RPM packages
9. Prepare manual pages
10. Define the fundamentals of socket programming

Course Content

The course content is composed of unix commands, the grep family, introducing awk, introducing sed,
environment and shell variables, shell (bash) programming, writing makefile, gnome programming, creating rpm packages, writing manual pages, sockets.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Unix Commands
3) The grep Family
4) Introducing awk
5) Introducing sed
6) Environment and Shell Variables
7) Shell (BASH) Programming
8) Shell (BASH) Programming
9) Shell (BASH) Programming
10) Writing Makefile
11) Gnome Programming
12) Creating RPM Packages
13) Writing Manual Pages
14) Sockets

Sources

Course Notes / Textbooks: Neil Matthew and Richard Stones, Beginning Linux Programming, Wiley, 2008, ISBN 13: 978-0-470-14762-7

David Tansley, Linux & Unix Shell Programming, Addison-Wesley, 2000, ISBN 10: 0-201-67472-6
References: Yok - None.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 20
Homework Assignments 2 % 10
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 3 5 15
Homework Assignments 1 8 8
Quizzes 5 3 15
Midterms 1 17 17
Final 1 18 18
Total Workload 115

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.