SEN4504 Management Information SystemsBahçeşehir UniversityDegree Programs BIOMEDICAL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
BIOMEDICAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN4504 Management Information Systems Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: E-Learning
Course Coordinator : Instructor BARIŞ YÜCE
Course Lecturer(s): Prof. Dr. ADEM KARAHOCA
Recommended Optional Program Components: None
Course Objectives: The objective of the course is to motivate students to teach them the role of Information Systems in organizations. MIS topics related with computer technologies, information development, and impact of information systems on business organization for organization information architectures. Course covers both technical and managerial issues.

Learning Outcomes

The students who have succeeded in this course;
1. Describe information systems in the enterprise
2. Describe information systems organizations
3. Analyze ethical and social issues
4. Analyze managing hardware and software assets
5. Analyze managing data resources
6. Describe managing knowledge
7. Apply management decision making
8. Define the business value of systems
9. Analyze information systems security control

Course Content

The course content is composed of managing the digital firm, information systems in the enterprise, information systems, organizations, management, and strategy, the digital firm: electronic business and electronic commerce, ethical and social issues in the digital firm, managing hardware and software assets, managing data resources, the internet and the new information technology infrastructure, managing knowledge for the digital firm, enhancing management decision making for the digital firm, understanding the business value of systems and managing change, information systems security and control.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Managing the Digital Firm
2) Information Systems in the Enterprise
3) Information Systems, Organizations, Management, and Strategy
4) The Digital Firm: Electronic Business and Electronic Commerce
5) Ethical and Social Issues in the Digital Firm
6) Managing Hardware and Software Assets
7) Managing Data Resources
8) Managing Data Resources / Midterm I
9) The Internet and the New Information Technology Infrastructure
10) Managing Knowledge for the Digital Firm
11) Enhancing Management Decision Making for the Digital Firm
12) Enhancing Management Decision Making for the Digital Firm / Midterm II
13) Understanding the Business Value of Systems and Managing Change
14) Information Systems Security and Control

Sources

Course Notes / Textbooks: Laudon, J., Laudon,K., “Management Information Systems”, McGraw Hill, 2008
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 2 % 10
Homework Assignments 2 % 10
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 3 6 18
Quizzes 2 3 6
Midterms 2 15 30
Final 1 17 17
Total Workload 113

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge of subjects specific to mathematics (analysis, linear, algebra, differential equations, statistics), science (physics, chemistry, biology) and related engineering discipline, and the ability to use theoretical and applied knowledge in these fields in complex engineering problems.
2) Identify, formulate, and solve complex Biomedical Engineering problems; select and apply proper modeling and analysis methods for this purpose
3) Design complex Biomedical systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in Biomedical Engineering practice; employ information technologies effectively.
5) Design and conduct numerical or physical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Biomedical Engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Biomedical Engineering-related problems.
7) Ability to communicate effectively in Turkish, oral and written, to have gained the level of English language knowledge (European Language Portfolio B1 general level) to follow the innovations in the field of Biomedical Engineering; gain the ability to write and understand written reports effectively, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Having knowledge for the importance of acting in accordance with the ethical principles of biomedical engineering and the awareness of professional responsibility and ethical responsibility and the standards used in biomedical engineering applications
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Biomedical Engineering on health, environment, security in universal and social scope, and the contemporary problems of Biomedical Engineering; is aware of the legal consequences of Mechatronics engineering solutions.