SEN4016 Multivariate Data AnalysisBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN4016 Multivariate Data Analysis Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. MEHMET ALPER TUNGA
Recommended Optional Program Components: None.
Course Objectives: The students will have the ability of applying specific techniques included in multivariate analysis such as principle component analysis, factor analysis, linear regression to specific problems.

Learning Outcomes

The students who have succeeded in this course;
1. Describe multivariate data analysis concepts
2. Define the properties and limitations of PCA and compute PCA through different ways
3. Describe the types of factoring and factor computation
4. Define metric and non-metric scales
5. Describe simple and multiple correspondence analysis and chi squared distances
6. Define variations of MANOVA
7. Evaluate regression coefficients, parameter estimation, hypothesis testing
8. Describe deduction, induction, estimation, tests, correlation
9. Define univariate and multivariate filters

Course Content

The course content is composed of principle component analysis (pca), factor analysis, multidimensional scaling, correspondence analysis, multivariate analysis of variance (manova), multiple linear regression, statistical inference, feature subset selection.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Principle Component Analysis (PCA)
3) Principle Component Analysis (PCA)
4) Factor Analysis
5) Factor Analysis
6) Multidimensional Scaling
7) Correspondence Analysis
8) Multivariate Analysis of Variance (MANOVA)
9) Multiple Linear Regression
10) Multiple Linear Regression
11) Statistical Inference
12) Statistical Inference
13) Feature Subset Selection
14) Feature Subset Selection

Sources

Course Notes / Textbooks: Multivariate Data Analysis, 7/E, Joseph F. Hair, Jr, William C. Black, Barry J. Babin, Rolph E. Anderson, Pearson, 2010, 9780138132637
References: Yok - None.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 4 % 20
Homework Assignments 2 % 10
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 4 5 20
Homework Assignments 2 5 10
Quizzes 4 3 12
Midterms 1 15 15
Final 1 17 17
Total Workload 116

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products. 2
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems. 2
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging. 3
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem. 2
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation. 3
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically. 3
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams. 2
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems. 2
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system. 3
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life. 3
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions. 3
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.