SEN2022 Software Engineering Analysis and DesignBahçeşehir UniversityDegree Programs ARTIFICIAL INTELLIGENCE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN2022 Software Engineering Analysis and Design Spring
3 0 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. MEHMET ALPER TUNGA
Recommended Optional Program Components: None
Course Objectives: The students will have the ability of analyzing and designing of a software development process such as defining scope, describing problems, gathering system requirements, constructing data, object and process models and identifying alternative solution to apply feasibility analysis for decision making purposes.


Learning Outcomes

The students who have succeeded in this course;
1. Describe systems analysis and design concepts and define the components of information systems
2. Describe the essential phases of systems development
3. Describe project management tools and a number of systems analysis approaches for solving information system problems
4. Define scope of information system problems
5. Identify the problems, opportunities and directives that trigger the project
6. Define functional and nonfunctional system requirements, apply fact-finding techniques
7. Define actors and use cases, construct context and use case model diagrams
8. Construct data models and UML diagrams
9. Define the basic concepts and constructs of a process model and construct context, data flow, event and system diagrams
10. Identify alternative system solutions, define six types of feasibility, prepare cost-benefit analyses and system proposal reports

Course Content

The course content is composed of the basic concepts of systems analysis and design, the components of information systems, methods for developing information systems, project management, systems analysis approaches, scope definition phase, problem analysis phase , requirements analysis phase, use-cases, data modeling and analysis, process modeling, feasibility analysis and the system proposal.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Systems Analysis and Design
2) The Components of Information Systems
3) Systems Analysis Approaches
4) Project Management
5) Scope Definition and Problem Analysis Phases
6) Requirements Analysis Phase
7) Use Case Diagrams
8) Use Case Scenarios
9) Data Modeling and Analysis
10) Data Modeling and Analysis
11) UML Diagrams
12) Process Modeling
13) Feasibility Analysis and the System Proposal
14) Project Presentations

Sources

Course Notes / Textbooks: Eric J. Braude and Michael E. Bernstein, Software Engineering: Modern Approaches 2ed, John Wiley & Sons, 2011, ISBN 978-0-471-69208-9

Lonnie D. Bentley and Jeffrey L. Whitten, Systems Analysis & Design for the Global Enterprise 7ed, McGraw Hill, 2007, ISBN-13 978-0-07-110766-2
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 10 % 10
Project 1 % 20
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.