TEXTILE AND FASHION DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
SEN2212 | Data Structures and Algorithms II | Spring | 2 | 2 | 3 | 7 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. ÖZGE YÜCEL KASAP |
Course Lecturer(s): |
Assist. Prof. BETÜL ERDOĞDU ŞAKAR Assoc. Prof. YÜCEL BATU SALMAN RA SEVGİ CANPOLAT RA MERVE ARITÜRK |
Recommended Optional Program Components: | None |
Course Objectives: | The objective of this course is to analyze data structures and algorithms used in software engineering in detail. After completing the course, the student will have knowledge of applying, implementing and analysis of data structures, including, trees, binary search trees, balanced search trees, heaps and graphs. Certain fundamental techniques, such as sorting, hashing and greedy algorithms are also taught. The teaching methods of the course include lectures, practice, and project preparation. |
The students who have succeeded in this course; The students who have succeeded in this course; 1) Describe and apply basic object oriented programming principles. 2) Implement basic data structures such as trees, binary search trees, balanced search trees, heaps and graphs. 3) Describe and implement sorting algorithms on common data structures. 4) Describe and implement searching algorithms on common data structures. 5) Implement and use hashing algorithms. 6) Implement and use greedy algorithms. 7) Choose and design data structures for writing efficient programs. |
The course content is composed of basic data structures like trees, binary search trees, balanced search trees, heaps, graphs and sorting, hashing and greedy algorithms. |
Week | Subject | Related Preparation |
1) | Introduction and Sorting Algorithms. | Sorting algorithms. |
2) | Introduction to different tree structures. | Trees. |
3) | Introduction to binary search trees. | Binary search trees. |
4) | Implementing binary search tree using Java. | Binary search trees. |
5) | Introduction to balanced trees and implementing AVL balanced tree structure using Java. | AVL trees. |
6) | Using other balanced tree structure using Java. | Other balanced trees. |
7) | Using heap structure and implementing them using Java. | Heap. |
8) | Using heaps as priority queues. Midterm. | Heap. |
9) | Analyzing and implementing hashing algorithms. | Hashing algorithms. |
10) | Analyzing and implementing graph structure using Java. | Graph. |
11) | Analyzing and implementing graph algorithms. | Graph algorithms. |
12) | Analyzing and implementing greedy algorithms. | Greedy algorithms. |
13) | Analyzing and implementing greedy algorithms. Quiz. | Greedy algorithms. |
14) | Review. |
Course Notes / Textbooks: | Data Structures & Problem Solving Using Java (Mark Allen Weiss) Data Structures and Algorithm Analysis in Java (Mark Allen Weiss) Data Structures and Abstractions with Java (Frank Carrano) |
References: | Yok. |
Semester Requirements | Number of Activities | Level of Contribution |
Laboratory | 2 | % 10 |
Quizzes | 2 | % 10 |
Project | 1 | % 15 |
Midterms | 1 | % 25 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 45 | |
PERCENTAGE OF FINAL WORK | % 55 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 2 | 28 |
Laboratory | 14 | 3 | 42 |
Project | 1 | 30 | 30 |
Quizzes | 2 | 15 | 30 |
Midterms | 1 | 20 | 20 |
Final | 1 | 25 | 25 |
Total Workload | 175 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Understands the principles of artistic creation and basic design and applies the art and design objects he creates within this framework. | |
2) | Conducts the multifaceted research required for textile and fashion design processes and analyzes and interprets the results. | |
3) | Creates original and applicable fabric, clothing and pattern designs by using elements from different historical periods and cultures in accordance with his purpose. | |
4) | Recognizes textile raw materials and equipments. | |
5) | Uses computer programs effectively in the garment and fabric surface design process. | |
6) | Has professional technical knowledge regarding the implementation of clothing designs and production; In this context, recognizes and uses technological tools and equipment. | |
7) | Understands the importance of interdisciplinary interaction and communication in textile and clothing design-production-presentation processes and reflects this on the processes. | |
8) | Works in a programmed and disciplined manner in professional practices. | |
9) | Realizes the necessity of lifelong learning to maintain his productivity, creativity and professional competence. | |
10) | Understands, adopts and applies ethical responsibilities in professional practices; Has knowledge of relevant legal regulations. | |
11) | Establishes effective visual, written and verbal communication in the field of textile and fashion design. | |
12) | Reflects his knowledge on current and contemporary issues from all fields to his professional theoretical and practical studies on textile and clothing design; Understands the social and universal effects of these issues. | |
13) | Has sufficient awareness about social justice, environmental awareness, quality culture and protection of cultural values. |