MCH3012 Physics for Game ProgrammingBahçeşehir UniversityDegree Programs ARTIFICIAL INTELLIGENCE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MCH3012 Physics for Game Programming Spring
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. MEHMET BERKE GÜR
Recommended Optional Program Components: N/A
Course Objectives: Many games benefit from the use of real physics for enhanced reality. Therefore it is important for a game developer to understand and use law of physics to plan more realistic games. This course serves as a starting point for the development of physics-based realistic games.

Learning Outcomes

The students who have succeeded in this course;
1- Apply Newton’s Second Law to particles and particle systems,
2- Use 3D kinematics of particles and rigid bodies in example scenarios,
3- Describe the forces and moments in rigid bodies,
4- Model the motion of fundamental vehicles : aircraft, ship and car,
5- Understand the physics of light and its interaction between surfaces,
6- Describe the surface properties of different materials used in solid modeling,
7- use Processing environment to program fundamental game concepts with physical realism

Course Content

The role of physics in game programming; Basic Concepts from Physics; Rigid Body Motion; Introduction to Processing Programming; Game Programming Lab; Vehicle models; Modeling ambient environment; Game programming applications;

Weekly Detailed Course Contents

Week Subject Related Preparation
1) The role of physics in game programming See course web site for additional resources and info
2) Basic Concepts from Physics: Velocity, mass, acceleration, force etc.
3) Basic Concepts from Physics (cont)
4) Rigid Body Motion; Term projects and formation of project groups
5) Introduction to Processing Programming
6) Processing (cont)
7) Game Programming Lab
8) Vehicle models
9) Vehicle models
10) Modeling ambient environment
11) Modeling ambient environment (cont)
12) Midterm; Project interim checks Prepare yourself for project interim check
13) Game programming applications
14) Project presentations Prepare a presentation about your project; check your project whether it works for all conditions

Sources

Course Notes / Textbooks: David H. Eberly, “Game Physics”, (2010, 2nd ed.)
ISBN:978-0123749031
References: Online resources, Video tutorials

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 5
Homework Assignments 3 % 15
Presentation 1 % 10
Project 1 % 40
Midterms 1 % 15
Final 1 % 15
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Laboratory 1 3
Study Hours Out of Class 16 48
Presentations / Seminar 1 5
Project 1 20
Homework Assignments 3 12
Midterms 1 4
Final 1 6
Total Workload 140

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.