MCH3012 Physics for Game ProgrammingBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MCH3012 Physics for Game Programming Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. MEHMET BERKE GÜR
Recommended Optional Program Components: N/A
Course Objectives: Many games benefit from the use of real physics for enhanced reality. Therefore it is important for a game developer to understand and use law of physics to plan more realistic games. This course serves as a starting point for the development of physics-based realistic games.

Learning Outcomes

The students who have succeeded in this course;
1- Apply Newton’s Second Law to particles and particle systems,
2- Use 3D kinematics of particles and rigid bodies in example scenarios,
3- Describe the forces and moments in rigid bodies,
4- Model the motion of fundamental vehicles : aircraft, ship and car,
5- Understand the physics of light and its interaction between surfaces,
6- Describe the surface properties of different materials used in solid modeling,
7- use Processing environment to program fundamental game concepts with physical realism

Course Content

The role of physics in game programming; Basic Concepts from Physics; Rigid Body Motion; Introduction to Processing Programming; Game Programming Lab; Vehicle models; Modeling ambient environment; Game programming applications;

Weekly Detailed Course Contents

Week Subject Related Preparation
1) The role of physics in game programming See course web site for additional resources and info
2) Basic Concepts from Physics: Velocity, mass, acceleration, force etc.
3) Basic Concepts from Physics (cont)
4) Rigid Body Motion; Term projects and formation of project groups
5) Introduction to Processing Programming
6) Processing (cont)
7) Game Programming Lab
8) Vehicle models
9) Vehicle models
10) Modeling ambient environment
11) Modeling ambient environment (cont)
12) Midterm; Project interim checks Prepare yourself for project interim check
13) Game programming applications
14) Project presentations Prepare a presentation about your project; check your project whether it works for all conditions

Sources

Course Notes / Textbooks: David H. Eberly, “Game Physics”, (2010, 2nd ed.)
ISBN:978-0123749031
References: Online resources, Video tutorials

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 5
Homework Assignments 3 % 15
Presentation 1 % 10
Project 1 % 40
Midterms 1 % 15
Final 1 % 15
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Laboratory 1 3
Study Hours Out of Class 16 48
Presentations / Seminar 1 5
Project 1 20
Homework Assignments 3 12
Midterms 1 4
Final 1 6
Total Workload 140

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.