MCH3012 Physics for Game ProgrammingBahçeşehir UniversityDegree Programs COMPUTER ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
COMPUTER ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MCH3012 Physics for Game Programming Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. MEHMET BERKE GÜR
Recommended Optional Program Components: N/A
Course Objectives: Many games benefit from the use of real physics for enhanced reality. Therefore it is important for a game developer to understand and use law of physics to plan more realistic games. This course serves as a starting point for the development of physics-based realistic games.

Learning Outcomes

The students who have succeeded in this course;
1- Apply Newton’s Second Law to particles and particle systems,
2- Use 3D kinematics of particles and rigid bodies in example scenarios,
3- Describe the forces and moments in rigid bodies,
4- Model the motion of fundamental vehicles : aircraft, ship and car,
5- Understand the physics of light and its interaction between surfaces,
6- Describe the surface properties of different materials used in solid modeling,
7- use Processing environment to program fundamental game concepts with physical realism

Course Content

The role of physics in game programming; Basic Concepts from Physics; Rigid Body Motion; Introduction to Processing Programming; Game Programming Lab; Vehicle models; Modeling ambient environment; Game programming applications;

Weekly Detailed Course Contents

Week Subject Related Preparation
1) The role of physics in game programming See course web site for additional resources and info
2) Basic Concepts from Physics: Velocity, mass, acceleration, force etc.
3) Basic Concepts from Physics (cont)
4) Rigid Body Motion; Term projects and formation of project groups
5) Introduction to Processing Programming
6) Processing (cont)
7) Game Programming Lab
8) Vehicle models
9) Vehicle models
10) Modeling ambient environment
11) Modeling ambient environment (cont)
12) Midterm; Project interim checks Prepare yourself for project interim check
13) Game programming applications
14) Project presentations Prepare a presentation about your project; check your project whether it works for all conditions

Sources

Course Notes / Textbooks: David H. Eberly, “Game Physics”, (2010, 2nd ed.)
ISBN:978-0123749031
References: Online resources, Video tutorials

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 5
Homework Assignments 3 % 15
Presentation 1 % 10
Project 1 % 40
Midterms 1 % 15
Final 1 % 15
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Laboratory 1 3
Study Hours Out of Class 16 48
Presentations / Seminar 1 5
Project 1 20
Homework Assignments 3 12
Midterms 1 4
Final 1 6
Total Workload 140

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and computer engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. 2
3) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. 3
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or computer engineering research topics. 3
6) Ability to work effectively within and multi-disciplinary teams; individual study skills. 2
7) Ability to communicate effectively in verbal and written Turkish; knowledge of at least one foreign language; ability to write active reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in engineering; awareness of the legal consequences of engineering solutions.