INE3003 Engineering EconomyBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
INE3003 Engineering Economy Fall 3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELİF HAKTANIR AKTAŞ
Course Lecturer(s): Dr. Öğr. Üyesi ADNAN ÇORUM
Dr. Öğr. Üyesi ETHEM ÇANAKOĞLU
Dr. Öğr. Üyesi ALPER CAMCI
Recommended Optional Program Components: N.A.
Course Objectives: The purpose of this course is to supplement
engineering student’s technical training with the
knowledge and capability to perform financial
analysis especially in the area of capital
investment.

Learning Outcomes

The students who have succeeded in this course;
I. Explain the role of engineering economy and the concepts of time value of money
II. Define financial factors regarding time and interest effect on money
III. Define nominal and effective interest rates and inflation rate
IV. Perform present worth and annual worth analysis to evaluate projects and investments
V. Define the Rate of return and perform rate of return analysis to evaluate projects and investment

Course Content

Foundations of engineering economy
Factors: How time and interest affect money
Combining factors
Nominal and effective interest rates
Present worth analysis
Annual worth analysis
Rate of return analysis
Inflation

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Foundations of engineering economy
3) Factors: How time and interest affect money
4) Factors: How time and interest affect money
5) Combining factors
6) Nominal and effective interest rates
7) Nominal and effective interest rates
8) Present worth analysis
9) Present worth analysis
11) Rate of Return Analysis: Multiple Alternatives
12) Breakeven and payback analysis
13) Effects of Inflation
14) Effects of Inflation

Sources

Course Notes / Textbooks: 1. Chan S Park, Contemporary Engineering Economics, Global Edition, 6th edition, Pearson.
2. Blank & Tarquin (2012) Engineering Economy, 8th Ed. McGraw-Hill Inc.
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Laboratory 14 % 15
Quizzes 3 % 15
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Application 14 2 28
Study Hours Out of Class 14 4 56
Quizzes 3 1 3
Midterms 1 2 2
Final 1 2 2
Total Workload 119

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.