CMP4502 Distributed DatabasesBahçeşehir UniversityDegree Programs MECHATRONICS (TURKISH)General Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MECHATRONICS (TURKISH)
Associate TR-NQF-HE: Level 5 QF-EHEA: Short Cycle EQF-LLL: Level 5

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP4502 Distributed Databases Spring
Fall
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Associate (Short Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi TARKAN AYDIN
Recommended Optional Program Components: None
Course Objectives: Communication paradigms: client/server protocols, remote procedure call (e.g., Java RMI), multicast protocols handling asynchronous communication and failures. Distributed transaction management requires enhanced concurrency control methods. Comparing algorithms proposed by researchers and commercial solutions. Replicating data to increase fault-tolerance and the performance of databases.

Learning Outcomes

The students who have succeeded in this course;
1. Be able to understand Distributed computing systems, their characteristics, and desired functionality
2. Become familiar with Distributed computer system models and architectures
3. Be able to understand Synchronization
4. Be able to understand Replication
5. Be able to use distributed naming
6. Be able to understand Fault-tolerance

Course Content

1.Introduction
2.DDBMS Architecture
3.Distributed Database Design
4.Semantic Integrity Control
5.Query decomposition and data localization
6.Optimization of Distributed Queries
7.Transactions
8.Concurrency Control
9.Reliability

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction: syllabus, administration and organization of the course, general introduction in distributed DBMS None
2) DDBMS Architecture: definition of DDBMS architecture, ANSI/SPARC standard, global, local, external, and internal schemas, DDBMS architectures, components of DDBMS None
3) Distributed Database Design: conceptual design (what can be distributed, design patterns), top-down, bottom-up patterns, technical design (fragmentation, allocation and replication of fragments, optimality, heuristics) None
4) Semantic Integrity Control: view management, security control, integrity control None
5) Semantic Integrity Control: view management, security control, integrity control None
6) Midterm Exam 1 Review all the topics
7) Query decomposition and data localization: normalization, analysis, elimination of redundancy, rewriting, reduction for HF, reduction for VF None
8) Optimization of Distributed Queries: basic concepts, distributed cost model, database statistics None
9) Optimization of Distributed Queries: ordering of joins and semijoins, query optimization algorithms, INGRES, System R, hill climbing None
10) Transactions: introduction to transactions, definition and examples, properties, classification, processing issues, execution None
11) Midterm Exam 2 Review all the topics
12) Concurrency Control: definition, execution schedules, examples, locking based algorithms, timestamp ordering algorithm, deadlock management None
13) Reliability: definitions, basic concepts, local recovery management, distributed reliability protocols None
14) Reliability: distributed reliability protocols, 2PC protocol None

Sources

Course Notes / Textbooks: Principles of Distributed Database Systems by M. Tamer Özsu and Patrick Valduriez
References: None

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 10
Midterms 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To improve fundamental computer knowledge, to encourage students using office and package programs.
2) Ability to have and use of fundamental mathematics knowledge and skills the usage of relevant materials.
3) Ability to recognize general structures of machine equipments and the features of shaping
4) Ability to grasp manufacturing processes and cutting tool materials, materials, statics, mechanics and fluid science fundemantal knowledge.
5) Ability to draw assembly and auxilary devices as well as to draw whole or details of a system.
6) Ability to have a knowledge of fundemantal manufacturing process such as turning, milling, punching,grinding and welding techniques and to have a self esteem in order to work behind the bench.
7) Ability to do computer aided design and write program on digital benches.
8) Ability to prepare project report, follow up project process and implement projects.
9) ability to learn the areas of usage of electronic circuit components. Ability to grasp and write programs for micro controllers and for their components. Ability to design relevant circuits.
10) Ability to understand the electric motors principles and AC-DC analysis
11) Ability to gain a dominaion on visual programming
12) Having the ability to communicate efficiently in verbal and written Turkish, to know at least one foreign language in order to communicate with the colleagues and customers.