CMP4502 Distributed DatabasesBahçeşehir UniversityDegree Programs ARCHITECTUREGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARCHITECTURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP4502 Distributed Databases Spring
Fall
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi TARKAN AYDIN
Recommended Optional Program Components: None
Course Objectives: Communication paradigms: client/server protocols, remote procedure call (e.g., Java RMI), multicast protocols handling asynchronous communication and failures. Distributed transaction management requires enhanced concurrency control methods. Comparing algorithms proposed by researchers and commercial solutions. Replicating data to increase fault-tolerance and the performance of databases.

Learning Outcomes

The students who have succeeded in this course;
1. Be able to understand Distributed computing systems, their characteristics, and desired functionality
2. Become familiar with Distributed computer system models and architectures
3. Be able to understand Synchronization
4. Be able to understand Replication
5. Be able to use distributed naming
6. Be able to understand Fault-tolerance

Course Content

1.Introduction
2.DDBMS Architecture
3.Distributed Database Design
4.Semantic Integrity Control
5.Query decomposition and data localization
6.Optimization of Distributed Queries
7.Transactions
8.Concurrency Control
9.Reliability

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction: syllabus, administration and organization of the course, general introduction in distributed DBMS None
2) DDBMS Architecture: definition of DDBMS architecture, ANSI/SPARC standard, global, local, external, and internal schemas, DDBMS architectures, components of DDBMS None
3) Distributed Database Design: conceptual design (what can be distributed, design patterns), top-down, bottom-up patterns, technical design (fragmentation, allocation and replication of fragments, optimality, heuristics) None
4) Semantic Integrity Control: view management, security control, integrity control None
5) Semantic Integrity Control: view management, security control, integrity control None
6) Midterm Exam 1 Review all the topics
7) Query decomposition and data localization: normalization, analysis, elimination of redundancy, rewriting, reduction for HF, reduction for VF None
8) Optimization of Distributed Queries: basic concepts, distributed cost model, database statistics None
9) Optimization of Distributed Queries: ordering of joins and semijoins, query optimization algorithms, INGRES, System R, hill climbing None
10) Transactions: introduction to transactions, definition and examples, properties, classification, processing issues, execution None
11) Midterm Exam 2 Review all the topics
12) Concurrency Control: definition, execution schedules, examples, locking based algorithms, timestamp ordering algorithm, deadlock management None
13) Reliability: definitions, basic concepts, local recovery management, distributed reliability protocols None
14) Reliability: distributed reliability protocols, 2PC protocol None

Sources

Course Notes / Textbooks: Principles of Distributed Database Systems by M. Tamer Özsu and Patrick Valduriez
References: None

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 10
Midterms 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Using the theoretical/conceptual and practical knowledge acquired for architectural design, design activities and research.
2) Identifying, defining and effectively discussing aesthetic, functional and structural requirements for solving design problems using critical thinking methods.
3) Being aware of the diversity of social patterns and user needs, values and behavioral norms, which are important inputs in the formation of the built environment, at local, regional, national and international scales.
4) Gaining knowledge and skills about architectural design methods that are focused on people and society, sensitive to natural and built environment in the field of architecture.
5) Gaining skills to understand the relationship between architecture and other disciplines, to be able to cooperate, to develop comprehensive projects; to take responsibility in independent studies and group work.
6) Giving importance to the protection of natural and cultural values in the design of the built environment by being aware of the responsibilities in terms of human rights and social interests.
7) Giving importance to sustainability in the solution of design problems and the use of natural and artificial resources by considering the social, cultural and environmental issues of architecture.
8) Being able to convey and communicate all kinds of conceptual and practical thoughts related to the field of architecture by using written, verbal and visual media and information technologies.
9) Gaining the ability to understand and use technical information about building technology such as structural systems, building materials, building service systems, construction systems, life safety.
10) Being aware of legal and ethical responsibilities in design and application processes.