CMP4502 Distributed DatabasesBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP4502 Distributed Databases Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi TARKAN AYDIN
Recommended Optional Program Components: None
Course Objectives: Communication paradigms: client/server protocols, remote procedure call (e.g., Java RMI), multicast protocols handling asynchronous communication and failures. Distributed transaction management requires enhanced concurrency control methods. Comparing algorithms proposed by researchers and commercial solutions. Replicating data to increase fault-tolerance and the performance of databases.

Learning Outcomes

The students who have succeeded in this course;
1. Be able to understand Distributed computing systems, their characteristics, and desired functionality
2. Become familiar with Distributed computer system models and architectures
3. Be able to understand Synchronization
4. Be able to understand Replication
5. Be able to use distributed naming
6. Be able to understand Fault-tolerance

Course Content

1.Introduction
2.DDBMS Architecture
3.Distributed Database Design
4.Semantic Integrity Control
5.Query decomposition and data localization
6.Optimization of Distributed Queries
7.Transactions
8.Concurrency Control
9.Reliability

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction: syllabus, administration and organization of the course, general introduction in distributed DBMS None
2) DDBMS Architecture: definition of DDBMS architecture, ANSI/SPARC standard, global, local, external, and internal schemas, DDBMS architectures, components of DDBMS None
3) Distributed Database Design: conceptual design (what can be distributed, design patterns), top-down, bottom-up patterns, technical design (fragmentation, allocation and replication of fragments, optimality, heuristics) None
4) Semantic Integrity Control: view management, security control, integrity control None
5) Semantic Integrity Control: view management, security control, integrity control None
6) Midterm Exam 1 Review all the topics
7) Query decomposition and data localization: normalization, analysis, elimination of redundancy, rewriting, reduction for HF, reduction for VF None
8) Optimization of Distributed Queries: basic concepts, distributed cost model, database statistics None
9) Optimization of Distributed Queries: ordering of joins and semijoins, query optimization algorithms, INGRES, System R, hill climbing None
10) Transactions: introduction to transactions, definition and examples, properties, classification, processing issues, execution None
11) Midterm Exam 2 Review all the topics
12) Concurrency Control: definition, execution schedules, examples, locking based algorithms, timestamp ordering algorithm, deadlock management None
13) Reliability: definitions, basic concepts, local recovery management, distributed reliability protocols None
14) Reliability: distributed reliability protocols, 2PC protocol None

Sources

Course Notes / Textbooks: Principles of Distributed Database Systems by M. Tamer Özsu and Patrick Valduriez
References: None

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 10
Midterms 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.