CMP4323 Wireless and Mobile NetworksBahçeşehir UniversityDegree Programs MECHATRONICS (TURKISH)General Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MECHATRONICS (TURKISH)
Associate TR-NQF-HE: Level 5 QF-EHEA: Short Cycle EQF-LLL: Level 5

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP4323 Wireless and Mobile Networks Spring
Fall
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Associate (Short Cycle)
Mode of Delivery: Face to face
Course Coordinator : MEHMET ŞÜKRÜ KURAN
Recommended Optional Program Components: None
Course Objectives: This course covers wireless and mobile networking concepts and protocols with real-world examples. This course aims to prvide students with a basic understanding about the wireless and mobile networks and related problem solving discipline using mathematics / engineering principles.

Learning Outcomes

The students who have succeeded in this course;
I. An ability to design algorithms for wireless communication problems
II. An ability to develop test and monitoring programs for wireless networks
III. An ability to design packet size optimization techniques for wireless networks
IV. An ability to analyze and evaluate the performance of wireless networks
V. An ability to design communication solutions for vehicular networks
VI. An ability to organize and document program code following the principles of software engineering and to professional prepare project reports.

Course Content

This course covers wireless and mobile networking concepts and protocols with real-world examples. After completing the course, students will get a basic understanding about the wireless and mobile networks and related problem solving discipline using mathematics / engineering principles.

1st Week: An overview of wireless networks
2nd Week: Broadband Communication Technologies
3rd Week: 3G Communication Technologies
4th Week: 4G and Beyond
5th Week: Wireless Local Area Networks
6th Week: Midterm Exam-I
7th Week: Near Field Communications
8th Week: RFID
9th Week: Ad Hoc Networks
10th Week: Wireless Sensor Networks
11th Week: Midterm Exam-II
12th Week: Packet Size Optimization in Wireless Networks
13th Week: Underwater Acoustic and Underground Communications
14th Week: Vehicular Networks and Review

Weekly Detailed Course Contents

Week Subject Related Preparation
1) 1st Week: An overview of wireless networks
2) 2nd Week: Broadband Communication Technologies
3) 3rd Week: 3G Communication Technologies
4) 4th Week: 4G and Beyond
5) 5th Week: Wireless Local Area Networks
6) 6th Week: Midterm Exam-I
7) 7th Week: Near Field Communications
8) 8th Week: RFID
9) 9th Week: Ad Hoc Networks
10) 10th Week: Wireless Sensor Networks
11) 11th Week: Midterm Exam-II
12) 12th Week: Packet Size Optimization in Wireless Networks
13) 13th Week: Underwater Acoustic and Underground Communications
14) 14th Week: Vehicular Networks

Sources

Course Notes / Textbooks: 1. W. Stallings, “Data and Computer Communications,” Prentice Hall, 8th edition, 2007.

References: 2. I.F. Akyildiz and M.C. Vuran, ''Wireless Sensor Networks,'' John Wiley & Sons, 2010.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 5
Project 1 % 25
Midterms 2 % 40
Final 1 % 30
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Study Hours Out of Class 14 82
Midterms 2 6
Final 1 3
Total Workload 133

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To improve fundamental computer knowledge, to encourage students using office and package programs.
2) Ability to have and use of fundamental mathematics knowledge and skills the usage of relevant materials.
3) Ability to recognize general structures of machine equipments and the features of shaping
4) Ability to grasp manufacturing processes and cutting tool materials, materials, statics, mechanics and fluid science fundemantal knowledge.
5) Ability to draw assembly and auxilary devices as well as to draw whole or details of a system.
6) Ability to have a knowledge of fundemantal manufacturing process such as turning, milling, punching,grinding and welding techniques and to have a self esteem in order to work behind the bench.
7) Ability to do computer aided design and write program on digital benches.
8) Ability to prepare project report, follow up project process and implement projects.
9) ability to learn the areas of usage of electronic circuit components. Ability to grasp and write programs for micro controllers and for their components. Ability to design relevant circuits.
10) Ability to understand the electric motors principles and AC-DC analysis
11) Ability to gain a dominaion on visual programming
12) Having the ability to communicate efficiently in verbal and written Turkish, to know at least one foreign language in order to communicate with the colleagues and customers.