CMP4323 Wireless and Mobile NetworksBahçeşehir UniversityDegree Programs PHOTOGRAPHY AND VIDEOGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
PHOTOGRAPHY AND VIDEO
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP4323 Wireless and Mobile Networks Spring
Fall
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : MEHMET ŞÜKRÜ KURAN
Recommended Optional Program Components: None
Course Objectives: This course covers wireless and mobile networking concepts and protocols with real-world examples. This course aims to prvide students with a basic understanding about the wireless and mobile networks and related problem solving discipline using mathematics / engineering principles.

Learning Outcomes

The students who have succeeded in this course;
I. An ability to design algorithms for wireless communication problems
II. An ability to develop test and monitoring programs for wireless networks
III. An ability to design packet size optimization techniques for wireless networks
IV. An ability to analyze and evaluate the performance of wireless networks
V. An ability to design communication solutions for vehicular networks
VI. An ability to organize and document program code following the principles of software engineering and to professional prepare project reports.

Course Content

This course covers wireless and mobile networking concepts and protocols with real-world examples. After completing the course, students will get a basic understanding about the wireless and mobile networks and related problem solving discipline using mathematics / engineering principles.

1st Week: An overview of wireless networks
2nd Week: Broadband Communication Technologies
3rd Week: 3G Communication Technologies
4th Week: 4G and Beyond
5th Week: Wireless Local Area Networks
6th Week: Midterm Exam-I
7th Week: Near Field Communications
8th Week: RFID
9th Week: Ad Hoc Networks
10th Week: Wireless Sensor Networks
11th Week: Midterm Exam-II
12th Week: Packet Size Optimization in Wireless Networks
13th Week: Underwater Acoustic and Underground Communications
14th Week: Vehicular Networks and Review

Weekly Detailed Course Contents

Week Subject Related Preparation
1) 1st Week: An overview of wireless networks
2) 2nd Week: Broadband Communication Technologies
3) 3rd Week: 3G Communication Technologies
4) 4th Week: 4G and Beyond
5) 5th Week: Wireless Local Area Networks
6) 6th Week: Midterm Exam-I
7) 7th Week: Near Field Communications
8) 8th Week: RFID
9) 9th Week: Ad Hoc Networks
10) 10th Week: Wireless Sensor Networks
11) 11th Week: Midterm Exam-II
12) 12th Week: Packet Size Optimization in Wireless Networks
13) 13th Week: Underwater Acoustic and Underground Communications
14) 14th Week: Vehicular Networks

Sources

Course Notes / Textbooks: 1. W. Stallings, “Data and Computer Communications,” Prentice Hall, 8th edition, 2007.

References: 2. I.F. Akyildiz and M.C. Vuran, ''Wireless Sensor Networks,'' John Wiley & Sons, 2010.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 5
Project 1 % 25
Midterms 2 % 40
Final 1 % 30
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Study Hours Out of Class 14 82
Midterms 2 6
Final 1 3
Total Workload 133

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Knowledge of photographic and video media and ability to use basic, intermediate and advanced techniques of these media.
2) Ability to understand, analyze and evaluate theories, concepts and uses of photography and video.
3) Ability to employ theoretical knowledge in the areas of the use of photography and video.
4) Familiarity with and ability to review the historical literature in theoretical and practical studies in photography and video.
5) Ability in problem solving in relation to projects in photography and video.
6) Ability to generate innovative responses to particular and novel requirements in photography and video.
7) Understanding and appreciation of the roles and potentials of the image across visual culture
8) Ability to communicate distinctively by means of photographic and video images.
9) Experience of image post-production processes and ability to develop creative outcomes through this knowledge.
10) Knowledge of and ability to participate in the processes of production, distribution and use of photography and video in the media.
11) Ability to understand, analyze and evaluate global, regional and local problematics in visual culture.
12) Knowledge of and ability to make a significant contribution to the goals of public communication.
13) Enhancing creativity via interdisciplinary methods to develop skills for realizing projects.
14) Gaining general knowledge about the points of intersection of communication, art and technology.