CMP4321 Introduction to Network Security and CryptographyBahçeşehir UniversityDegree Programs MECHATRONICS (TURKISH)General Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MECHATRONICS (TURKISH)
Associate TR-NQF-HE: Level 5 QF-EHEA: Short Cycle EQF-LLL: Level 5

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP4321 Introduction to Network Security and Cryptography Spring
Fall
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Associate (Short Cycle)
Mode of Delivery: Face to face
Course Coordinator : MEHMET ŞÜKRÜ KURAN
Course Lecturer(s): Dr. Öğr. Üyesi SELÇUK BAKTIR
Recommended Optional Program Components: None
Course Objectives: This is an introductory course where fundamental concepts in cryptography and network security are explained. After completing the course, students will get basic understanding about encryption, decryption, stream ciphers, block ciphers, public-key cryptography, digital signatures, hash functions, message authentication codes and key distribution protocols.

Learning Outcomes

The students who have succeeded in this course;
I. Gain knowledge on Symmetric key cryptography, block and stream ciphers,
II. Gain knowledge on the AES algorithm,
III. Gain knowledge on Public key cryptography and public key algorithms such as RSA, Diffie-Hellman, Elgamal and elliptic curve cryptography,
IV. Gain knowledge on digital Signatures,
V. Gain knowledge on hash functions,
VI. Gain knowledge on key exchange protocols.

Course Content

Introduction and Review of Basics. Stream Ciphers. Advanced Encryption Standard (AES). Block Cipher Modes of Operation. Public-key Cryptography. The RSA Algorithm. Digital Signatures. Hash Functions. Message Authentication Codes. Discrete Logarithm Problem. Diffie-Hellman Key Exchange and ElGamal Encryption. Elliptic Curve Cryptography. Key Establishment Protocols.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction and review of basics.
2) Stream Ciphers.
3) Advanced Encryption Standard (AES).
4) Block Cipher Modes of Operation.
5) Public-key Cryptography.
6) RSA Algorithm.
7) Midterm exam.
8) Digital Signatures.
9) Hash Functions.
10) Message Authentication Codes.
11) Discrete Logarithm Problem.
12) Diffie-Hellman Key Exchange and ElGamal Encryption.
13) Elliptic Curve Cryptography.
14) Key Establishment Protocols.

Sources

Course Notes / Textbooks: Understanding Cryptography, Christof Paar and Jan Pelzl, Springer 2010.
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 0
Homework Assignments 6 % 20
Presentation 1 % 10
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 4 56
Homework Assignments 6 4 24
Midterms 1 2 2
Final 1 2 2
Total Workload 126

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To improve fundamental computer knowledge, to encourage students using office and package programs.
2) Ability to have and use of fundamental mathematics knowledge and skills the usage of relevant materials.
3) Ability to recognize general structures of machine equipments and the features of shaping
4) Ability to grasp manufacturing processes and cutting tool materials, materials, statics, mechanics and fluid science fundemantal knowledge.
5) Ability to draw assembly and auxilary devices as well as to draw whole or details of a system.
6) Ability to have a knowledge of fundemantal manufacturing process such as turning, milling, punching,grinding and welding techniques and to have a self esteem in order to work behind the bench.
7) Ability to do computer aided design and write program on digital benches.
8) Ability to prepare project report, follow up project process and implement projects.
9) ability to learn the areas of usage of electronic circuit components. Ability to grasp and write programs for micro controllers and for their components. Ability to design relevant circuits.
10) Ability to understand the electric motors principles and AC-DC analysis
11) Ability to gain a dominaion on visual programming
12) Having the ability to communicate efficiently in verbal and written Turkish, to know at least one foreign language in order to communicate with the colleagues and customers.