CMP4321 Introduction to Network Security and CryptographyBahçeşehir UniversityDegree Programs ARTIFICIAL INTELLIGENCE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP4321 Introduction to Network Security and Cryptography Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : MEHMET ŞÜKRÜ KURAN
Course Lecturer(s): Dr. Öğr. Üyesi SELÇUK BAKTIR
Recommended Optional Program Components: None
Course Objectives: This is an introductory course where fundamental concepts in cryptography and network security are explained. After completing the course, students will get basic understanding about encryption, decryption, stream ciphers, block ciphers, public-key cryptography, digital signatures, hash functions, message authentication codes and key distribution protocols.

Learning Outcomes

The students who have succeeded in this course;
I. Gain knowledge on Symmetric key cryptography, block and stream ciphers,
II. Gain knowledge on the AES algorithm,
III. Gain knowledge on Public key cryptography and public key algorithms such as RSA, Diffie-Hellman, Elgamal and elliptic curve cryptography,
IV. Gain knowledge on digital Signatures,
V. Gain knowledge on hash functions,
VI. Gain knowledge on key exchange protocols.

Course Content

Introduction and Review of Basics. Stream Ciphers. Advanced Encryption Standard (AES). Block Cipher Modes of Operation. Public-key Cryptography. The RSA Algorithm. Digital Signatures. Hash Functions. Message Authentication Codes. Discrete Logarithm Problem. Diffie-Hellman Key Exchange and ElGamal Encryption. Elliptic Curve Cryptography. Key Establishment Protocols.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction and review of basics.
2) Stream Ciphers.
3) Advanced Encryption Standard (AES).
4) Block Cipher Modes of Operation.
5) Public-key Cryptography.
6) RSA Algorithm.
7) Midterm exam.
8) Digital Signatures.
9) Hash Functions.
10) Message Authentication Codes.
11) Discrete Logarithm Problem.
12) Diffie-Hellman Key Exchange and ElGamal Encryption.
13) Elliptic Curve Cryptography.
14) Key Establishment Protocols.

Sources

Course Notes / Textbooks: Understanding Cryptography, Christof Paar and Jan Pelzl, Springer 2010.
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 0
Homework Assignments 6 % 20
Presentation 1 % 10
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 4 56
Homework Assignments 6 4 24
Midterms 1 2 2
Final 1 2 2
Total Workload 126

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.