CMP1401 Introduction to Programming (C)Bahçeşehir UniversityDegree Programs ARTIFICIAL INTELLIGENCE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP1401 Introduction to Programming (C) Spring 2 2 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi GÖRKEM KAR
Course Lecturer(s): RA ÇİĞDEM ERİŞ
Dr. Öğr. Üyesi TARKAN AYDIN
Dr. Öğr. Üyesi ERKUT ARICAN
Dr. Öğr. Üyesi CEMAL OKAN ŞAKAR
Dr. UTKU GÜLEN
Dr. Öğr. Üyesi ÖVGÜ ÖZTÜRK ERGÜN
Prof. Dr. NAFİZ ARICA
Recommended Optional Program Components: None
Course Objectives: The course aims to teach the syntax and use of major constructs of the C language. Fundamental programming concepts will be discussed and students will gain hands-on experience to develop their programming and algorithmic thinking skills.

Learning Outcomes

The students who have succeeded in this course;
I. An ability to design elementary computer algorithms.
II. An ability to develop code following the principles of C programming language.
III. An ability to use various types of selection contructs in a C program
IV. An ability to use repetition constructs in a C program.
V. An ability to use simple data structures like arrays in a C program.
VI. An ability to define and correctly call functions in a C program

Course Content

Introduction, printf, scanf, variables, operators, constants, data types, assignment, type conversions, type casting, post/pre-increment/decrement, if, nested if, logical operators, switch, while, for, do-while loops, nested loops, break, continue, functions, scope, macro-substitution, pointers, variable parameters, arrays, passing arrays to functions, sorting and binary search, File I/O, strings, multi-dimensional arrays, structures.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction, printf, scanf, variables, operators, constants
2) Data types, assignment, type conversions, type casting, post/pre-increment/decrement
3) If, nested if, logical operators, switch
4) While, for, do-while loops
5) Nested loops, break, continue
6) Functions, scope, macro-substitution
7) Pointers, variable parameters
8) Arrays, passing arrays to functions
9) Sorting and binary search
10) File I/O
11) Strings
12) Multi-dimensional arrays
13) Structures
14) Review
15) Final
16) Final

Sources

Course Notes / Textbooks: C How to Program, 6/E, Paul Deitel Harvey M. Deitel, Prentice Hall, 2009


References: The C Programming Language, Brian W. Kernighan, Dennis M. Ritchie, Prentice Hall

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Laboratory 12 % 25
Midterms 1 % 35
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 28
Laboratory 14 28
Study Hours Out of Class 15 79
Midterms 1 2
Final 1 2
Total Workload 139

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.