EEE5603 Wireless CommunicationsBahçeşehir UniversityDegree Programs ARTIFICIAL INTELLIGENCE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARTIFICIAL INTELLIGENCE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE5603 Wireless Communications Spring
3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. SAEID KARAMZADEH
Course Lecturer(s): Assoc. Prof. ALKAN SOYSAL
Recommended Optional Program Components: None
Course Objectives: This course aims to teach physical characteristics of wireless medium and several technologies that are specifically designed for transmission over wireless media. Specifically, the students will identify path loss, shadow fading, multi-path fading and diversity. Different wireless channel models will be introduced and their capacity will be analyzed. Students will have the knowledge of modern wireless technologies, such as multi-carrier modulation and OFDM, spread spectrum and CDMA, and multiple antenna systems.

Learning Outcomes

The students who have succeeded in this course;
1. Describe physical medium of a wireless channel,
2. Explain path loss, shadowing and multi-path fading,
3. Describe the effects of time, frequency and space diversity,
4. Gain knowledge on combining techniques,
5. Apply capacity analysis to wireless channel models,
6. Explain multi-carrier modulation and OFDM,
7. Describe the advantages of spreading the spectrum and CDMA,
8. Gain knowledge of multiple antenna systems and MIMO technology
9. Have a broad understanding of multi-user systems

Course Content

Characteristics of wireless channels, such as path loss, shadowing and fading. Different channel models and their capacity calculations. Modern wireless communication technologies.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Overview of wireless communications
2) Path loss and shadowing models
3) Statistical fading, narrowband fading
4) Wideband fading
5) Capacity of wireless channels
6) Adaptive techniques in wireless communication channels
7) Diversity and combining
8) Comparison and discussion of previously mentioned methods. Midterm
10) Multicarrier systems, OFDM
11) Spread Spectrum and CDMA
12) WCDMA and 3G systems
13) Multiple antenna systems, MIMO
14) Multi-user systems

Sources

Course Notes / Textbooks: Wireless Communications, Andrea Goldsmith, Cambridge University Press
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Project 4 50
Midterms 8 60
Final 4 48
Total Workload 200

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Have sufficient background in mathematics, science and artificial intelligence engineering.
2) Use theoretical and applied knowledge in the fields of mathematics, science and artificial intelligence engineering together for engineering solutions.
3) Identify, define, formulate and solve engineering problems, select and apply appropriate analytical methods and modeling techniques for this purpose.
4) Analyse a system, system component or process and design it under realistic constraints to meet desired requirements; apply modern design methods in this direction.
5) Select and use modern techniques and tools necessary for engineering applications.
6) Design and conduct experiments, collect data, and analyse and interpret results.
7) Work effectively both as an individual and as a multi-disciplinary team member.
8) Access information via conducting literature research, using databases and other resources
9) Follow the developments in science and technology and constantly update themself with an awareness of the necessity of lifelong learning.
10) Use information and communication technologies together with computer software with at least the European Computer License Advanced Level required by their field.
11) Communicate effectively, both verbal and written; know a foreign language at least at the European Language Portfolio B1 General Level.
12) Have an awareness of the universal and social impacts of engineering solutions and applications; know about entrepreneurship and innovation; and have an awareness of the problems of the age.
13) Have a sense of professional and ethical responsibility.
14) Have an awareness of project management, workplace practices, employee health, environment and work safety; know the legal consequences of engineering practices.