EEE5603 Wireless CommunicationsBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE5603 Wireless Communications Fall 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. SAEID KARAMZADEH
Course Lecturer(s): Assoc. Prof. ALKAN SOYSAL
Recommended Optional Program Components: None
Course Objectives: This course aims to teach physical characteristics of wireless medium and several technologies that are specifically designed for transmission over wireless media. Specifically, the students will identify path loss, shadow fading, multi-path fading and diversity. Different wireless channel models will be introduced and their capacity will be analyzed. Students will have the knowledge of modern wireless technologies, such as multi-carrier modulation and OFDM, spread spectrum and CDMA, and multiple antenna systems.

Learning Outcomes

The students who have succeeded in this course;
1. Describe physical medium of a wireless channel,
2. Explain path loss, shadowing and multi-path fading,
3. Describe the effects of time, frequency and space diversity,
4. Gain knowledge on combining techniques,
5. Apply capacity analysis to wireless channel models,
6. Explain multi-carrier modulation and OFDM,
7. Describe the advantages of spreading the spectrum and CDMA,
8. Gain knowledge of multiple antenna systems and MIMO technology
9. Have a broad understanding of multi-user systems

Course Content

Characteristics of wireless channels, such as path loss, shadowing and fading. Different channel models and their capacity calculations. Modern wireless communication technologies.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Overview of wireless communications
2) Path loss and shadowing models
3) Statistical fading, narrowband fading
4) Wideband fading
5) Capacity of wireless channels
6) Adaptive techniques in wireless communication channels
7) Diversity and combining
8) Comparison and discussion of previously mentioned methods. Midterm
10) Multicarrier systems, OFDM
11) Spread Spectrum and CDMA
12) WCDMA and 3G systems
13) Multiple antenna systems, MIMO
14) Multi-user systems

Sources

Course Notes / Textbooks: Wireless Communications, Andrea Goldsmith, Cambridge University Press
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Project 4 50
Midterms 8 60
Final 4 48
Total Workload 200

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.