EEE5601 Digital CommunicationBahçeşehir UniversityDegree Programs ARCHITECTUREGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARCHITECTURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE5601 Digital Communication Spring
Fall
3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. SAEID KARAMZADEH
Recommended Optional Program Components: None
Course Objectives: AWGN kanal için bazı modülasyon/demodülasyon tekniklerini, temel sezim kuramını ve performans analizinin metodlarını detaylarıyla anlamak.

Learning Outcomes

The students who have succeeded in this course;
1. Describe digital communications,

2. Explain signal space representation,

3. Describe digital modulation schemes,

4. Gain knowledge noise calculations,

5. Understand single-user detection theory.

Course Content

This course starts with reviewing concepts of sampling, quantization and encoding. Then, it moves to source and channel coding, signal space representation, and digital modulation schemes. Upon visiting digital demodulation schemes, performance analysis of different schemes are carried out. In the second half of the course, basic estimation and detection techniques are introduced. Finally, the course ends with fading channel analysis.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) General model for a digital communication system
2) Source and channel coding
3) Signal Space Representation
4) Digital modulation schemes, M-QAM
5) Performance considerations, Bandwidth considerations, Practical considerations
6) (Phase) noncoherent detection principles
7) Differential detection, System constraints and trade-offs
8) Comparison and discussion of previously mentioned methods. Midterm exam.
9) General Concepts of Detection Theory, Bayesian Decision Theory
10) The Likelihood Ratio Test and Its applications
11) Optimal binary detection for the Gaussian vector channel
12) Optimal detection for M-ary hypothesis tests
13) BER calculations
14) Introduction to fading channels

Sources

Course Notes / Textbooks: Proakis, Digital Communications, Fourth Edition, McGraw Hill
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Project 4 50
Midterms 9 60
Final 4 48
Total Workload 200

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Using the theoretical/conceptual and practical knowledge acquired for architectural design, design activities and research.
2) Identifying, defining and effectively discussing aesthetic, functional and structural requirements for solving design problems using critical thinking methods.
3) Being aware of the diversity of social patterns and user needs, values and behavioral norms, which are important inputs in the formation of the built environment, at local, regional, national and international scales.
4) Gaining knowledge and skills about architectural design methods that are focused on people and society, sensitive to natural and built environment in the field of architecture.
5) Gaining skills to understand the relationship between architecture and other disciplines, to be able to cooperate, to develop comprehensive projects; to take responsibility in independent studies and group work.
6) Giving importance to the protection of natural and cultural values in the design of the built environment by being aware of the responsibilities in terms of human rights and social interests.
7) Giving importance to sustainability in the solution of design problems and the use of natural and artificial resources by considering the social, cultural and environmental issues of architecture.
8) Being able to convey and communicate all kinds of conceptual and practical thoughts related to the field of architecture by using written, verbal and visual media and information technologies.
9) Gaining the ability to understand and use technical information about building technology such as structural systems, building materials, building service systems, construction systems, life safety.
10) Being aware of legal and ethical responsibilities in design and application processes.