EEE5600 Introduction to Information and Coding TheoryBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE5600 Introduction to Information and Coding Theory Spring 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery:
Course Coordinator : Assoc. Prof. SAEID KARAMZADEH
Course Lecturer(s): Assoc. Prof. ALKAN SOYSAL
Recommended Optional Program Components: none..........
Course Objectives: The aim of this course is to understand, in detail, basic information theory and coding theory arguments. Information theoretic analysis covers entropy/mutual information, source and channel coding. Coding theory analysis covers code construction, linear codes, cyclic and convolutional codes, near capacity codes.

Learning Outcomes

The students who have succeeded in this course;
1. Understand basic concepts and definitions of information theory
2. Know and apply source and channel coding theorems
3. Gain knowledge on code constructions
4. Understand basic concepts of coding theory
5. Apply modern error correcting codes

Course Content

This course covers basics of information theory and coding theory. The course starts with definitions of information theoretic quantities such as entropy, mutual information, etc. It covers Shannon's source coding theorem and explains Shannon codes and Huffman codes. Then Shannon's channel coding theorem is analyzed and capacity values of several channels are calculated. In the second half of the course, basic code construction methods are explained. Linear codes, cyclic codes, convolutional codes are introduced.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to basic concepts of information transfer
2) Define concepts of entropy, relative entropy, conditional entropy
3) Definition of mutual information and its calculation for different scenarios.
4) Source coding theorem
5) Applications of source coding theorem: Shannon codes, Huffman codes
6) Channel coding theorem
7) Differential entropy
8) Capacity calculations for different channel models. Midterm
9) The Gaussian channel and its capacity
10) Basics of code construction, Error detection and correction
11) Linear block codes
12) Cyclic codes
13) Convolutional codes
14) Near capacity codes

Sources

Course Notes / Textbooks: Thomas and Cover, "Elements of Information Theory", 2nd Edition, Wiley.
References: none..........

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Project 4 50
Midterms 8 60
Final 4 48
Total Workload 200

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.