Week |
Subject |
Related Preparation |
1) |
Tezhip; History, classic examples and modern works |
|
2) |
Hat (caligraphy); History, classic examples and modern works |
|
3) |
Wood and glasswork; classic examples and modern works |
|
4) |
Ceramic tiling and ceramic pottery; History, classic examples and modern works |
|
5) |
Field trip to Blue Mosque for project I |
|
6) |
Ebrû (Marble Painting) ; History, classic examples and modern works |
|
7) |
Local traditional arts |
|
8) |
Field trip to Museum of Turkish & Islamic Arts for Project I
Assignment: Project I; develop a concept for an original artwork and create an artifact involving motives or forms from traditional on Turkish Arts.
|
|
9) |
Exploring traditional motives in contemporay art of Eastern Asia |
|
10) |
Exploring traditional motives in contemporay art of Middle East |
|
11) |
Exploring traditional motives in contemporay art of Africa, and America |
|
12) |
Project I presentations |
|
13) |
Use of traditional Turkish motives, materials, techniques and style in modern art. |
|
14) |
Use of traditional Turkish motives, materials, techniques and style in modern design. |
|
|
Program Outcomes |
Level of Contribution |
1) |
Be able to specify functional and non-functional attributes of software projects, processes and products. |
|
2) |
Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems. |
|
3) |
Be able to develop a complex software system with in terms of code development, verification, testing and debugging. |
|
4) |
Be able to verify software by testing its program behavior through expected results for a complex engineering problem. |
|
5) |
Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation. |
|
6) |
Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically. |
|
7) |
Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams. |
|
8) |
Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems. |
|
9) |
Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system. |
|
10) |
Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities. |
4 |
11) |
Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life. |
3 |
12) |
Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions. |
|
13) |
Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions. |
3 |