BME4005 Laser-Tissue InteractionsBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME4005 Laser-Tissue Interactions Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi BURCU TUNÇ ÇAMLIBEL
Course Objectives: The aim of this course is to provide a thorough understanding of the basic physical principles which underlie therapeutic uses of lasers in medicine. Laser-tissue interaction mechanisms will be examined.

Learning Outcomes

The students who have succeeded in this course;
On completion successful students will be able to understand the mechanisms describing the interaction of laser radiation with biological tissue, spectroscopic and diagnostic optical applications of lasers in medicine, selected applications of lasers and optical techniques which are presently important in medicine.

Course Content

Wave motion, electromagnetic theory, electromagnetic spectrum, propagation of light , measurement of optical properties of tissues, optics, microscopy, lasers, mechanisms of laser-tissue ineractions, lasers in surgery, tissue welding, laser tweezers, lasers in imaging, diagnostic applications, electrosurgery versus laser surgery, laser safety.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction, wave motion; plane, spherical and cylindrical waves, Electromagnetic theory, electromagnetic waves, energy and momentum of radiation. Dipole emission, emission and absorption by atoms and molecules, black body radiation, electromagnetic spectrum.
2) Propagation of light: reflection, refraction, scattering, interference and diffraction. Measurement of optical properties of tissue, Geometrical optics, fiberoptics. Microscopy and limits of resolution, mechanisms of contrast.
3) Eye and vision, perception of color. Spontaneous and stimulated emission, principle of laser, cavity modes, lasing media, pumping mechanisms, continuous and pulsed regimes.
4) "Mechanisms of laser-tissue interactions I: Photochemical. Photodynamic therapy, photostimulation, cytotoxicity of UV light."
5) Mechanisms of laser-tissue interactions II: Photothermal. Heat generation, heat conduction and distribution. Thermal damage to tissue. Laser-Induced Interstitial Thermotherapy (LIIT).
6) Mechanisms of laser-tissue interactions III: Photomechanical. Explosive evaporation, shock and acoustic waves, cavitation, jet formation.
7) Mechanisms of laser-tissue interactions IV: Dielectric breakdown, plasma-mediated ablation.
8) Lasers in Ophthalmology.
9) Lasers in Dermatology.
10) Lasers in General Surgery, Cardiovascular Surgery, Gynecology. Tissue welding. Low power lasers. Micromanipulation and cell surgery.
11) Lasers in Imaging.
12) Diagnostic applications: Autofluorescence, Raman spectroscopy, Scattering Light Spectroscopy, Doppler velocimetry.
13) "Electrosurgery: Mechanisms of interaction and tissue damage. Pros and cons vs. laser surgery."
14) Laser safety: lasers classification.

Sources

Course Notes / Textbooks: M. H. Niemz, Laser tissue interactions, Springer Verlag. ISBN 354-060-3638
References: Lasers in Medical Science (SpringerLINK 1998-), Lasers in Surgery and Medicine (WILEY 1997-)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Presentation 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Midterms 2 2 4
Final 1 2 2
Total Workload 160

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.