BME4005 Laser-Tissue InteractionsBahçeşehir UniversityDegree Programs LOGISTIC MANAGEMENTGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
LOGISTIC MANAGEMENT
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME4005 Laser-Tissue Interactions Spring
Fall
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi BURCU TUNÇ ÇAMLIBEL
Course Objectives: The aim of this course is to provide a thorough understanding of the basic physical principles which underlie therapeutic uses of lasers in medicine. Laser-tissue interaction mechanisms will be examined.

Learning Outcomes

The students who have succeeded in this course;
On completion successful students will be able to understand the mechanisms describing the interaction of laser radiation with biological tissue, spectroscopic and diagnostic optical applications of lasers in medicine, selected applications of lasers and optical techniques which are presently important in medicine.

Course Content

Wave motion, electromagnetic theory, electromagnetic spectrum, propagation of light , measurement of optical properties of tissues, optics, microscopy, lasers, mechanisms of laser-tissue ineractions, lasers in surgery, tissue welding, laser tweezers, lasers in imaging, diagnostic applications, electrosurgery versus laser surgery, laser safety.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction, wave motion; plane, spherical and cylindrical waves, Electromagnetic theory, electromagnetic waves, energy and momentum of radiation. Dipole emission, emission and absorption by atoms and molecules, black body radiation, electromagnetic spectrum.
2) Propagation of light: reflection, refraction, scattering, interference and diffraction. Measurement of optical properties of tissue, Geometrical optics, fiberoptics. Microscopy and limits of resolution, mechanisms of contrast.
3) Eye and vision, perception of color. Spontaneous and stimulated emission, principle of laser, cavity modes, lasing media, pumping mechanisms, continuous and pulsed regimes.
4) "Mechanisms of laser-tissue interactions I: Photochemical. Photodynamic therapy, photostimulation, cytotoxicity of UV light."
5) Mechanisms of laser-tissue interactions II: Photothermal. Heat generation, heat conduction and distribution. Thermal damage to tissue. Laser-Induced Interstitial Thermotherapy (LIIT).
6) Mechanisms of laser-tissue interactions III: Photomechanical. Explosive evaporation, shock and acoustic waves, cavitation, jet formation.
7) Mechanisms of laser-tissue interactions IV: Dielectric breakdown, plasma-mediated ablation.
8) Lasers in Ophthalmology.
9) Lasers in Dermatology.
10) Lasers in General Surgery, Cardiovascular Surgery, Gynecology. Tissue welding. Low power lasers. Micromanipulation and cell surgery.
11) Lasers in Imaging.
12) Diagnostic applications: Autofluorescence, Raman spectroscopy, Scattering Light Spectroscopy, Doppler velocimetry.
13) "Electrosurgery: Mechanisms of interaction and tissue damage. Pros and cons vs. laser surgery."
14) Laser safety: lasers classification.

Sources

Course Notes / Textbooks: M. H. Niemz, Laser tissue interactions, Springer Verlag. ISBN 354-060-3638
References: Lasers in Medical Science (SpringerLINK 1998-), Lasers in Surgery and Medicine (WILEY 1997-)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Presentation 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Midterms 2 2 4
Final 1 2 2
Total Workload 160

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To correctly identify the problems and to be able to ask the correct questions
2) To have the ability for problem solving and to utilize analytical approach in dealing with the problems
3) To be able to identify business processes and use them to increase the productivity in logistics system.
4) To be fully prepared for a graduate study 2
5) Awareness of the new advancements in Information and Communications Technologies (ICT) and to be able to use them in logistics management effectively. internet and the electronic world
6) To understand the components of logistics as well as the importance of the coordination among these components.
7) To know the necessary ingredients for improving the productivity in business life
8) To think innovatively and creatively in complex situations 4
9) To act and think both regionally and internationally
10) To understand the demands and particular questions of globalization
11) Aware of the two way interaction between globalization and logistics; as well as to use this interaction for increasing the productivity.
12) To be able to use at least one foreign language both for communication and academic purposes 2
13) To acquire leadership qualities but also to know how to be a team member
14) To understand the importance of business ethics and to apply business ethics as a principal guide in both business and academic environment