BME4010 Healthcare Facility Guidelines and StandardsBahçeşehir UniversityDegree Programs ARCHITECTUREGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARCHITECTURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME4010 Healthcare Facility Guidelines and Standards Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. ALİ YEKTA ÜLGEN
Course Objectives: To learn the design and certification requirements for Hospitals, Health Care Facility Management and Safety.

Learning Outcomes

The students who have succeeded in this course;
Guidelines and Minimum Requirements for Design and Construction of Hospital and Health Care Facilities

Course Content

Guidelines and Minimum Requirements for Design and Construction of Hospital and Health Care Facilities; Sterilization, Medical Gas Pipeline System, Earth Grounding, Clean air systems, Hazardous materials and Risk Control, Patient Safety.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Guidelines for Design of Health Care Facilities (AIA)
2) Hospital Accreditation and JCI Standards; QHA Trent Accreditation Standards
3) Design Requirements for ICU, OR, X-Ray Department, PET Shielding Requirements
4) "Medical Gas Pipeline System, Guidelines for Testing Medical Gases (O2, N20 and Medical Air), Medical-surgical vacuum systems, Design of the Vacuum Pump System, Waste Anesthetic Gas Disposal"
5) Clean-air Systems and Classification, Hospital clean-air zones, Airborne Infection, ISO 14644
6) Particle Counting, Active/Passive Air Sampling, Isolation Rooms Design Requirements
7) Midterm Exam I
8) Earth Grounding System, Isolated Power Systems and Line Isolation Monitor, Conductive Flooring
9) "Guidelines for Design of Sterilization Department, Sterilization Validation, Sterility and Shelf Life, Bowie-Dick test, Chemical indicators, Biological indicators"
10) Sterilization Techniques (EtO, Formaldehyde, Ozone, Plasma , Gamma) Compaing EtO and Plasma sterilization techniques
11) Sterilization Department Design Guidelines, Validation in Sterilization
12) Health Devices IPM System for Medical Device Performance and Safety Measurements
13) Waste Management, Management of Hazardous Materials
14) Midterm Exam II

Sources

Course Notes / Textbooks: Ders Notları; Power Point sunumlar.
References: Joint Commission International Accreditation Standards for Hospitals, 6th Edition, Sterilization, Part 1: Sterilization in Health Care Facilities, AAMI (Association for the Advancement of Medical Instrumentation ), 2015 Edition; EN ISO 14644 Standards; EN ISO 7396; Guidelines for the Design and Construction of Health Care Facilities, American Institute of Architects and the Facility Guidelines Institute, 2014; NFPA 99 Standard For Healthcare Facilities, 2015 edition; ECRI Health Devices IPM.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 3 % 20
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 12 3 36
Study Hours Out of Class 14 5 70
Homework Assignments 4 7 28
Midterms 2 3 6
Final 1 2 2
Total Workload 142

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Using the theoretical/conceptual and practical knowledge acquired for architectural design, design activities and research.
2) Identifying, defining and effectively discussing aesthetic, functional and structural requirements for solving design problems using critical thinking methods.
3) Being aware of the diversity of social patterns and user needs, values and behavioral norms, which are important inputs in the formation of the built environment, at local, regional, national and international scales.
4) Gaining knowledge and skills about architectural design methods that are focused on people and society, sensitive to natural and built environment in the field of architecture.
5) Gaining skills to understand the relationship between architecture and other disciplines, to be able to cooperate, to develop comprehensive projects; to take responsibility in independent studies and group work.
6) Giving importance to the protection of natural and cultural values in the design of the built environment by being aware of the responsibilities in terms of human rights and social interests.
7) Giving importance to sustainability in the solution of design problems and the use of natural and artificial resources by considering the social, cultural and environmental issues of architecture.
8) Being able to convey and communicate all kinds of conceptual and practical thoughts related to the field of architecture by using written, verbal and visual media and information technologies.
9) Gaining the ability to understand and use technical information about building technology such as structural systems, building materials, building service systems, construction systems, life safety.
10) Being aware of legal and ethical responsibilities in design and application processes.