BME4010 Healthcare Facility Guidelines and StandardsBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME4010 Healthcare Facility Guidelines and Standards Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. ALİ YEKTA ÜLGEN
Course Objectives: To learn the design and certification requirements for Hospitals, Health Care Facility Management and Safety.

Learning Outcomes

The students who have succeeded in this course;
Guidelines and Minimum Requirements for Design and Construction of Hospital and Health Care Facilities

Course Content

Guidelines and Minimum Requirements for Design and Construction of Hospital and Health Care Facilities; Sterilization, Medical Gas Pipeline System, Earth Grounding, Clean air systems, Hazardous materials and Risk Control, Patient Safety.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Guidelines for Design of Health Care Facilities (AIA)
2) Hospital Accreditation and JCI Standards; QHA Trent Accreditation Standards
3) Design Requirements for ICU, OR, X-Ray Department, PET Shielding Requirements
4) "Medical Gas Pipeline System, Guidelines for Testing Medical Gases (O2, N20 and Medical Air), Medical-surgical vacuum systems, Design of the Vacuum Pump System, Waste Anesthetic Gas Disposal"
5) Clean-air Systems and Classification, Hospital clean-air zones, Airborne Infection, ISO 14644
6) Particle Counting, Active/Passive Air Sampling, Isolation Rooms Design Requirements
7) Midterm Exam I
8) Earth Grounding System, Isolated Power Systems and Line Isolation Monitor, Conductive Flooring
9) "Guidelines for Design of Sterilization Department, Sterilization Validation, Sterility and Shelf Life, Bowie-Dick test, Chemical indicators, Biological indicators"
10) Sterilization Techniques (EtO, Formaldehyde, Ozone, Plasma , Gamma) Compaing EtO and Plasma sterilization techniques
11) Sterilization Department Design Guidelines, Validation in Sterilization
12) Health Devices IPM System for Medical Device Performance and Safety Measurements
13) Waste Management, Management of Hazardous Materials
14) Midterm Exam II

Sources

Course Notes / Textbooks: Ders Notları; Power Point sunumlar.
References: Joint Commission International Accreditation Standards for Hospitals, 6th Edition, Sterilization, Part 1: Sterilization in Health Care Facilities, AAMI (Association for the Advancement of Medical Instrumentation ), 2015 Edition; EN ISO 14644 Standards; EN ISO 7396; Guidelines for the Design and Construction of Health Care Facilities, American Institute of Architects and the Facility Guidelines Institute, 2014; NFPA 99 Standard For Healthcare Facilities, 2015 edition; ECRI Health Devices IPM.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 3 % 20
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 12 3 36
Study Hours Out of Class 14 5 70
Homework Assignments 4 7 28
Midterms 2 3 6
Final 1 2 2
Total Workload 142

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.