BME4006 Principles of Medical ImagingBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME4006 Principles of Medical Imaging Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi BORA BÜYÜKSARAÇ
Course Lecturer(s): Prof. Dr. NAFİZ ARICA
Course Objectives: • To introduce the major techniques of imaging modalities.
• To present the underlying physics, image formation theories and selected applications of each modality.
• To teach the functions of the primary components of the widely used imaging modalities.

Learning Outcomes

The students who have succeeded in this course;
• Learn the functions of the primary components of the widely used imaging modalities.
• Know the physics and image formation theories of the imaging modalities.
• Gain the ability to decide on imaging parameters of each modality.

Course Content

The underlying physics, image formation theories and selected applications of each modality will be presented.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to medical imaging, overview of the modalities (radiography, fluoroscopy, mammography, computed tomography)
2) Overview of the modalities (Magnetic Resonance Imaging, Ultrasound Imaging, Doppler Ultrasound)
3) Nuclear medicine imaging, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), combined imaging modalities, image properties (Contrast, Spatial Resolution)
4) X-ray production, X-ray tubes, and X-ray generators, Bremsstrahlung spectrum, Characteristic x-ray spectrum
5) x-ray tubes, cathode, anode
6) Anode configurations: stationary and rotating, measurement of focal spot size
7) Anode angle, field coverage, and focal spot size, heel effect, off-focal radiation, collimators
8) Filtration, attenuation of x-rays, linear attenuation coefficient, mass attenuation coefficient, half-value layer, factors affecting x-ray emission, quality, quantity, and exposure
9) Mammography, focal spot considerations
10) Tube port, tube filtration, and beam quality, magnification techniques
11) CT system designs, basic concepts and definitions
12) X-ray tubes, filters, and collimation in CT scanners, x-ray interactions (rayleigh scattering, compton scattering)
13) X-ray interactions (the photoelectric effect)
14) Hounsfield Unit (HU)

Sources

Course Notes / Textbooks: Jerrold T. Bushberg, J. Anthony Seibert, Edwin M. Leidholdt Jr., John M. Boone
“The Essential Physics of Medical Imaging” ISBN: 9780781780575, 3rd Edition,
Publisher: Lippincott Williams & Wilkins (2012).

References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.