COP4403 Inventron - Applied Electronics and PCB DesignBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
COP4403 Inventron - Applied Electronics and PCB Design Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ZAFER İŞCAN
Recommended Optional Program Components: High Speed Digital Design: Design of High Speed Interconnects and Signaling, Hanqiao Zhang, 2015, ISBN-13: 978-0124186637
Course Objectives: The goal of this course to prepare students to enter the fast-paced world of electronics by applying the theoretical knowledge, learned in their foundation courses on analog and digital electronics, on a printed circuit board. Students will realise at least one printed circuit board project during the course.

Learning Outcomes

The students who have succeeded in this course;

1) Identifying the parameters of passive and active electronic components from technical datasheets
2) Schematic design of electronic circuits and simulation of the designed circuit
3) Designing pcb footprints of electronic components
4) Describing fundemantals of pcb design
5) Decribing multilayer (2-32) pcb design
6) Describing the fundementals of analog circuit design on pcb
7) Describing the fundementals of high speed digital circuit design on pcb
8) Explaning signal integrity and differential signal routing and crosstalk
9) Describing the fundementals of power circuit and RF circuit design on pcb
10) Explaning pcb manufacturing processes, gerber creation and IPC standards
11) Defining EMC guidelines for pcb layout

Course Content

Printed circuit board design, schematic design, defining footprint , parameters of
electronic components, multilayer pcb design, analog pcb design, high speed digital pcb design, signal integrity, differential signal routing, power pcb layout RF pcb layout, EMC guidelines, IPC, gerber, pcb manufacturing, circuit simulation, performance and limitations of physical components, crosstalk, cross coupling

Weekly Detailed Course Contents

Week Subject Related Preparation

Sources

Course Notes / Textbooks: High Speed Digital Design: Design of High Speed Interconnects and Signaling, Hanqiao Zhang, 2015, ISBN-13: 978-0124186637
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Total %
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK %
Total %

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.