BES4074 Nutrition and GeneticsBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BES4074 Nutrition and Genetics Fall 2 0 2 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Hybrid
Course Coordinator : Dr. Öğr. Üyesi CAN ERGÜN
Recommended Optional Program Components: None.
Course Objectives: The scope of the course is to explain the effect of the hereditary structure of the individual on the determination of nutritional habits, to stay away from the diseases to which he is genetically predisposed as much as possible and to evaluate the importance and effect of nutrition in order to ensure a high quality of life.

Learning Outcomes

The students who have succeeded in this course;
1. will be able to interpret the relationship between genetic factors and nutrition.
2. Will be able to develop recommendations for nutrient consumption to increase the expression of genes associated with diseases.
3. will be able to compare genetic diversity-ethnic differences in nutrition.

Course Content

This course includes genetic variation:nutritional applications, relationship between genes and nutrients or nutrient components, nutrigenomics and gene expression, nutrigenomics in the evaluation of the efficacy and safety of food components, vitamin metabolism, genetics and environment I, vitamin metabolism, genetics and environment II, enes, diet and plasma lipids, genetic variation and nutritional requirements, gene: environmental interactions and coronar heart disease, gene-nutrient interaction in type 1 diabetes, cancer nutrigenomics, article discussion topics.

Weekly Detailed Course Contents

Week Subject Related Preparation
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)

Sources

Course Notes / Textbooks: Haftalık olarak dağıtılacaktır / Weekly distributed by the course lecturer
References: 1- Ordovas JM. Nutrigenetics And Nutrigenomics, World Review of Nutrition and Dietetics,Vol.93,Karger, 2004.
2- Bouchard C., Ordovas JM. Progress in Molecular Biology and Translational Science Recent Advances in Nutrigenetics and Nutrigenomics, Elsevier, USA, 2012 3- Mahan L.K., Escott-Stump S., Krause's Food, Nutrition and Diet Therapy, 10th Edition, W. B. Saunders Company, USA, 2000

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Presentation 1 % 10
Midterms 1 % 30
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 14 3 42
Presentations / Seminar 1 20 20
Midterms 1 20 20
Final 1 40 40
Total Workload 150

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.