MBG3004 GeneticsBahçeşehir UniversityDegree Programs ARCHITECTUREGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARCHITECTURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG3004 Genetics Spring
Fall
3 0 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi EMİNE KANDEMİŞ
Recommended Optional Program Components: There is none.
Course Objectives: The main objective of the course is to provide an understanding of the principles and concepts of genetics and its applications in biological sciences.

Learning Outcomes

The students who have succeeded in this course;
1. Introduction to course, define basic concepts in genetics
2. Define DNA as the genetic material
3. Evaluate gene structure and function
4. Discuss outcomes of DNA variations
5. Define Mendelian genetics
6. Identify how chromosomes function in inheritance
7. Differentiate Non-Mendelian genetics from Mendelian genetics
8. Describe genomics and mapping of genomic sequences
9. Define dynamic aspects of genomics
10. Recognize relevance of genetics in cancer
11. Identify genetic composition of biological populations
12. Discuss theories on adaptation and evolution

Course Content

Genetics,which is a discipline of biology, is the study of genes, heredity, and variation in living organisms. The course content includes molecular structure and function of genes, gene behavior in the context of a cell or organism (e.g. dominance and epigenetics), patterns of inheritance from parent to offspring, and gene distribution, variation and change in populations.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Genetics, Introduction Reading
2) DNA as the Genetic Material Reading
3) Gene Structure and Function Reading
4) DNA Mutation, DNA Repair, and Transposable Elements Reading
5) Mendelian Genetics Reading
6) Chromosomal Basis of Inheritance Reading
7) Non-Mendelian Genetics I Reading
8) Non-Mendelian Genetics II Reading
9) Genomics: The Mapping and Sequencing of Genomes and Genetic Mapping in Eukaryotes Reading
10) Functional and Comparative Genomics Reading
11) SNPs and GWAS Reading
12) Genetics of Cancer Reading
13) Population Genetics Reading
14) Molecular Evolution Reading

Sources

Course Notes / Textbooks: Ders notları haftalık olarak verilecektir.
Course notes will be supplied weekly.

References: 1. iGenetics: A Molecular Approach with Mastering Genetics, Peter J. Russell, Third Edition, Pearson Education Inc., 2010 (ISBN-13: 978-0-321-56976-9)
2. Concepts of Genetics, William S. Klug, Michael R. Cummings, Tenth Edition, Pearson Benjamin Cummings, 2011 (ISBN-13: 978-0321732330)
3. Genes X, Jocelyn E. Krebs, Elliott S. Goldstein, Stephen T. Kilpatrick
Jones & Bartlett Publishers, 2009 (ISBN-13: 978-0763766320)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 5
Laboratory 1 % 20
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Application 12 2 24
Study Hours Out of Class 14 5 70
Midterms 1 19 19
Final 1 20 20
Total Workload 175

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Using the theoretical/conceptual and practical knowledge acquired for architectural design, design activities and research.
2) Identifying, defining and effectively discussing aesthetic, functional and structural requirements for solving design problems using critical thinking methods.
3) Being aware of the diversity of social patterns and user needs, values and behavioral norms, which are important inputs in the formation of the built environment, at local, regional, national and international scales.
4) Gaining knowledge and skills about architectural design methods that are focused on people and society, sensitive to natural and built environment in the field of architecture.
5) Gaining skills to understand the relationship between architecture and other disciplines, to be able to cooperate, to develop comprehensive projects; to take responsibility in independent studies and group work.
6) Giving importance to the protection of natural and cultural values in the design of the built environment by being aware of the responsibilities in terms of human rights and social interests.
7) Giving importance to sustainability in the solution of design problems and the use of natural and artificial resources by considering the social, cultural and environmental issues of architecture.
8) Being able to convey and communicate all kinds of conceptual and practical thoughts related to the field of architecture by using written, verbal and visual media and information technologies.
9) Gaining the ability to understand and use technical information about building technology such as structural systems, building materials, building service systems, construction systems, life safety.
10) Being aware of legal and ethical responsibilities in design and application processes.