MBG1002 Introduction to BioinformaticsBahçeşehir ÜniversitesiAkademik Programlar YAZILIM MÜHENDİSLİĞİÖğrenciler için Genel BilgiDiploma EkiErasmus BeyanıBologna KomisyonuUlusal Yeterlilikler
YAZILIM MÜHENDİSLİĞİ
Lisans TYYÇ: 6. Düzey QF-EHEA: 1. Düzey EQF-LLL: 6. Düzey

Ders Tanıtım Bilgileri

Ders Kodu Ders Adı Yarıyıl Teorik Pratik Kredi AKTS
MBG1002 Biyoinformatiğe Giriş Güz 3 0 3 5
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir.

Temel Bilgiler

Öğretim Dili: İngilizce
Dersin Türü: Non-Departmental Elective
Dersin Seviyesi: LİSANS
Dersin Veriliş Şekli: Yüz yüze
Dersin Koordinatörü: Dr. Öğr. Üyesi CEMALETTİN BEKPEN
Dersi Veren(ler): Prof. Dr. SÜREYYA AKYÜZ
Dr. Öğr. Üyesi SERKAN AYVAZ
Opsiyonel Program Bileşenleri: Bulunmuyor.
Dersin Amacı: Biyoinformatik (hesaplamalı moleküler biyoloji), biyolojik moleküllerin ve sistemlerin dizilimi, yapısı ve işlevi hakkındaki bilgileri yönetmek ve analiz etmek için hesaplamalı yöntemlerin uygulanmasını içerir. Bu giriş dersi, biyolojik verileri analiz ederken karşılaşılan yaygın ancak zor soruları ele almak için istatistiksel ve algoritmik kavramları kapsayacaktır. Biyolojik veriler, canlı hücrelerde bulunan bilgi düzeylerine göre kategorize edilebilir: DNA, RNA, proteinler, metabolitler ve diğer küçük moleküller. Bu ders modüller halinde düzenlenmiştir, her bölüm belirli bir biyolojik veri türüne, bu verilerle ilişkili biyolojik sorulara ve bu soruları ele almak için hesaplama yaklaşımlarına odaklanmaktadır. Bu dersin amacı aşağıdaki konuların anlaşılmasını sağlamaktır:
1_Biyolojik veri türleri
2_Biyolojik verileri analiz ederken ortaya çıkan hesaplama sorunları
3_Hesaplamalı biyolojide önemli uygulamaları olan, ancak biyoloji dışında da önemli uygulamaları olan bir dizi algoritma.
4_Hesaplamalı biyolojide yaygın olarak kullanılan algoritmaların çekirdek kümesi

Öğrenme Kazanımları

Bu dersi başarıyla tamamlayabilen öğrenciler;
1. Biyolog, biyokimyacı, tıbbi araştırmacılar, genetikçiler ve bilgisayar mühendislerinden oluşan disiplinler arası takımlar halinde çalışmayı tanır.
2. Büyük veritabanları üzerinde karmaşık arama yapma ve sonuçları yorumlamayı gerçekleştirir.
3. Genomik karşılaştırmalar yapma, genleri ve büyük genomik bölgeleri genom tarayıcılarda göstermeyi gerçekleştirir.
4. Parça bütünleme, gen bulma, protein katlanması ve mikroarray çalışmaları dahil olmak üzere temel biyoinformatik sorunları ve çözümlerini tanır.
5. İstatistiksel önem kavramları kullanarak sonuçları olasılık terimleriyle analiz eder.
6. Dizileme teknikleri, doğasında olan hesaplama problemleri, olası çözümleri tanır.
7. Markov Model kurma ve bunun gen tahmini için kullanımını tanımlar.
8. Mikroarray verilerinin analizi için hesaplama yöntemlerinin tanır ve bu verileri kullanarak gen ekspresyonu yorumlanmasını tartışır.
9.İnsan Genom Projesi ve sonuçları ile ilgili etik, yasal ve sosyal konularda tartışır.

Dersin İçeriği

Biyoinformatik, moleküler biyoloji, istatistik ve bilgisayar bilimlerini entegre eden ve hızla büyüyen bir alandır. Bu ders, DNA ve protein dizi analizinin matematiksel modelleri ve bilgisayar algoritmalarına adanmıştır. Bu derste, öğrenciler biyoinformatik analizleri yapmak için birçok popüler araçları öğrenecek ve bu algoritmaların esinlendiği düşünceler tanıtılacaktır. Var olan çeşitli biyoinformatik yöntemler eleştirel olarak tarif edilecek ve her birinin güçlü ve limitli yönleri tartışılacaktır.

Haftalık Ayrıntılı Ders İçeriği

Hafta Konu Ön Hazırlık
1) Bioinformatiğe Giriş
2) Genomik veri madenciliği (Biyolojik Veritabanları)
3) Sekanslama (Yöntemler ve Sekanslama teknolojileri)
4) Dizi Arama
5) Genomik Varyasyon
6) Dizi Hizalama
7) Moleküler Filogenetik
8) Tüm Genom Dizileme ve Haritalama
9) Ara sınav için tekrar
10) Varyant Tespitinin Aşağı Akış Analizi (TNP'ler, YÇ'ler, KSÇ'ler)
11) Omik Veri Analizi (Transkriptomik, Proteomik)
12) Omik Veri Analizi (Epigenomik, Paleogenomik)
13) Omik Veri Analizi (Fonksiyonel Genomik, Metagenomik)
14) Genel Tekrar

Kaynaklar

Ders Notları / Kitaplar: Biyoinformatik ders notları haftalık olarak verilecektir.
Course material will be supplied weekly.

1) Pevsner J. 2015. Bioinformatics and Functional Genomics, 3rd Ed. Wiley Blackwell.
Diğer Kaynaklar: 1) Pevsner J., Bioinformatics and Functional Genomics, Wiley-Liss, 2009
2) Mount D.W., Bioinformatics: Sequence and Genome Analysis (2nd edition), Cold Spring Harbor Laboratory Press, 2004
3) Krane D.E., Raymer M.L., Fundamental Concepts of Bioinformatics, Benjamin Cummings, 2003
4) Setubal C., Meidanis J., Introduction to Computational Molecular Biology, PWS Publishing, 1997"

Değerlendirme Sistemi

Yarıyıl İçi Çalışmaları Aktivite Sayısı Katkı Payı
Ödev 1 % 20
Ara Sınavlar 1 % 30
Final 1 % 50
Toplam % 100
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI % 50
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI % 50
Toplam % 100

Program ve Öğrenme Kazanımları İlişkisi

Etkisi Yok 1 En Düşük 2 Düşük 3 Orta 4 Yüksek 5 En Yüksek
           
Dersin Program Kazanımlarına Etkisi Katkı Payı
1) Karmaşık mühendislik problemlerine yönelik yazılım proje, süreç ve ürünlerine ait fonksiyonel ve fonksiyonel olmayan özellikleri tanımlayabilmek.
2) Karmaşık mühendislik problemlerinde yazılım mimarisi, bileşenleri, ara yüzleri ve sisteme ait diğer alt bileşenleri tasarlayabilmek.
3) Kodlama, doğrulama, sınama ve hata ayıklama konularını da içerecek şekilde karmaşık yazılım sistemleri geliştirebilmek.
4) Karmaşık mühendislik problemlerinde yazılımı, programın davranışlarını beklenen sonuçlara göre sınayarak doğrulayabilmek.
5) Karmaşık yazılım sistemlerinin çalışması sırasında, çalışma ortamının değişmesi, yeni kullanıcı istekleri ve yazılım hatalarının ortaya çıkması ile meydana gelen bakım faaliyetlerine yönelik işlemleri yapabilmek.
6) Karmaşık yazılım sistemlerinde yapılan değişiklikleri izleyebilmek ve kontrol edebilmek, entegrasyonunu sağlayabilmek, yeni sürümlerini sistematik olarak planlayabilmek ve riskleri yönetebilmek.
7) Disiplin içi ve disiplinler arası takımlarda görev alarak karmaşık yazılım sistemleri yaşam süreçlerini tanımlayabilmek, değerlendirebilmek, ölçebilmek, yönetebilmek ve uygulayabilmek.
8) Karmaşık mühendislik problemlerinde gerçekçi kısıtlar ve koşullar altında yazılım gereksinimlerini toplama, yazılımı tasarlama, geliştirme, sınama, bakımını yapma konularındaki çeşitli araçları ve yöntemleri kullanabilmek.
9) Temel kalite metrikler tanımlayabilmek, yazılım yaşam döngüsü süreçlerini uygulayabilmek, yazılım kalitesini ölçebilmek, kalite model karakteristiklerini tanımlayabilmek, standartları uygulayabilmek ve bunları karmaşık yazılım sistemlerini analiz etmekte, tasarlamakta, geliştirmekte, doğrulamakta ve sınamakta kullanabilmek.
10) Yazılım mühendisliği ile ortak sınırlara sahip olan matematik, fen bilimleri, bilgisayar mühendisliği, endüstri mühendisliği, sistem mühendisliği, ekonomi, yönetim ve sürdürülebilir kalkınma gibi diğer disiplinler hakkında teknik bilgi kazanabilmek ve bunlar aracılığıyla yenilikçi fikirleri karmaşık mühendislik problemlerinde ve girişimcilik faaliyetlerinde kullanabilmek. 4
11) Yazılım mühendisliği kültürü ve etik anlayışını kavrayabilmek ve bunları yazılım mühendisliğinde uygulayabilecek temel bilgilere sahip olmak, meslek hayatı boyunca gerekli teknik becerileri öğrenip başarıyla uygulayabilmek. 3
12) Yabancı dil ve Türkçe kullanarak etkin rapor yazabilmek ve yazılı raporları anlayabilmek, tasarım ve üretim raporları hazırlayabilmek, etkin sunum yapabilmek, açık ve anlaşılır talimat verebilmek ve alabilmek.
13) Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları ile mühendislik çözümlerinin hukuksal sonuçları hakkında bilgi sahibi olmak. 3