MBG4065 Introduction to Stem CellsBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4065 Introduction to Stem Cells Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: In this course, student should learn about the basic biology of embryonic, adult and cancer stem cells, molecular mechanisms of self renewal, differentiation and plasticity, reproductive and therapeutic cloning, epigenetic changes associated with stem cells, use of stem cells in cell based therapies and its ethical considerations.

Learning Outcomes

The students who have succeeded in this course;
1. Have a general understanding on stem cell biology.
2. Learn the basic features of stem cells and discuss the related mechanisms beneath.
3. Understand the effects of stem cells on the epigenetic changes.
4. Discuss stem cell based therapies and the related ethical issues stem from the uses of those therapies.
5. Categorize the stem cells.

Course Content

Basic biology of embryonic, adult and cancer stem cells. Molecular mechanisms of self renewal, differentiation and plasticity. Reproductive and therapeutic cloning. Epigenetic changes associated with stem cells. Use of stem cells in cell based therapies and its ethical considerations.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction and classification of stem cells
2) Basic biology of stem cells (self-renewal, pluripotency, plasticity, asymmetric division, niche)
3) Embryonic Stem Cells
4) Epiblast Stem Cells
5) Induced Pluripotent Stem Cells
6) Germline Stem Cells, Epigenetic Reprogramming I
7) Germline Stem Cells, Epigenetic Reprogramming II
8) Cancer Stem Cells
9) Mesenchymal Stem Cells
10) Hematopoeitic stem cells
11) Organ Specific Stem Cells (Neural- Vascular Endothelial, Pancreatic)
12) Organ Specific Stem Cells (Hepatic, Cardiac)
13) Organ Specific Stem Cells (Epidermal, Lung)
14) Review

Sources

Course Notes / Textbooks: Weekly course notes will be provided
References: Stem Cells Handbook, Steward Sell Publisher, 2003,ISBN 13: 9781588291134

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 5
Homework Assignments 1 % 15
Midterms 1 % 30
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Midterms 1 2 2
Final 1 2 2
Total Workload 158

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.