MBG4061 ImmunologyBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4061 Immunology Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: To determine the functions of the immune system, to learn the immune system components and immune system types, to understand the molecular mechanism of immune deficiency and autoimmune diseases.

Learning Outcomes

The students who have succeeded in this course;
1. Can comprehend the essential roles of immune system according to the knowledge of immun system components they gain during the course.
2. Can discriminate the immune system types by comparing their components and their functions
3. Can schema the immun response effector mechanism by learning the crosstalk of cells and molecules
4. Can find association between immune response and the pathogenesis of immun deficiency and autoimmune disease.
5. Can comprehend the immunological methods working principles by using the knowledg in advanced molecular biological methods.
6. Can reach the information about adaptive and humaral immune deficiency syndromes accorindg to scientific papers, assimilate and discusss the knowledge

Course Content

To determine the functions of the immune system, to learn the immune system components and immune system types, to understand the molecular mechanism of the immune deficiency and autoimmune diseases

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Immunology
2) Cells and tissues of the immune system
3) Innate immunity
4) Antigen processing and presentation to T cell
5) Antigen detection by adaptive immunity
6) Cell mediated immune responses
7) Effector mechanism of cell mediated immunity
8) Humoral immunity
9) Effector mechanism of humeral immunity
10) Hypersensitivity and types
11) Innate and adaptive immunodeficiency
12) Immunological tolerance and autoimmunity
13) Immune response to tumors and transplantation and rejection
14) Cytokines, chemokine, their receptors and techniques in immunology

Sources

Course Notes / Textbooks: 1. Basic Immunology Updated Edition: Functions and Disorders of the Immune System AK. Abbas, AH. Lichtman, 3. Edition, Saunders, 2010.
-Kuby Immunology, TJ. Kindt, BA. Osborne, RA. Goldsby, 6th edition, W. H. Freeman & Company, 2006.
-Janeway's Immunobiology, KM. Murphy, P Travers, M Walport, 7 edition, Garland Science, 2007.
-Immunology: A Short Course, R. Coico, G Sunshine, 6. Edition, Wiley-Blackwell, 2009.
-Roitt's Essential Immunology, PJ Delves, SJ Martin, DR Burton, IM Roitt, 12 edition, Wiley-Blackwell, 2011."
References: 1. www.sciencedirect.com
2. www.ncb.nlm.nih.gov.tr

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Presentation 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Presentations / Seminar 2 4 8
Final 1 2 2
Total Workload 150

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.