MBG4061 ImmunologyBahçeşehir UniversityDegree Programs INDUSTRIAL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
INDUSTRIAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4061 Immunology Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: To determine the functions of the immune system, to learn the immune system components and immune system types, to understand the molecular mechanism of immune deficiency and autoimmune diseases.

Learning Outcomes

The students who have succeeded in this course;
1. Can comprehend the essential roles of immune system according to the knowledge of immun system components they gain during the course.
2. Can discriminate the immune system types by comparing their components and their functions
3. Can schema the immun response effector mechanism by learning the crosstalk of cells and molecules
4. Can find association between immune response and the pathogenesis of immun deficiency and autoimmune disease.
5. Can comprehend the immunological methods working principles by using the knowledg in advanced molecular biological methods.
6. Can reach the information about adaptive and humaral immune deficiency syndromes accorindg to scientific papers, assimilate and discusss the knowledge

Course Content

To determine the functions of the immune system, to learn the immune system components and immune system types, to understand the molecular mechanism of the immune deficiency and autoimmune diseases

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Immunology
2) Cells and tissues of the immune system
3) Innate immunity
4) Antigen processing and presentation to T cell
5) Antigen detection by adaptive immunity
6) Cell mediated immune responses
7) Effector mechanism of cell mediated immunity
8) Humoral immunity
9) Effector mechanism of humeral immunity
10) Hypersensitivity and types
11) Innate and adaptive immunodeficiency
12) Immunological tolerance and autoimmunity
13) Immune response to tumors and transplantation and rejection
14) Cytokines, chemokine, their receptors and techniques in immunology

Sources

Course Notes / Textbooks: 1. Basic Immunology Updated Edition: Functions and Disorders of the Immune System AK. Abbas, AH. Lichtman, 3. Edition, Saunders, 2010.
-Kuby Immunology, TJ. Kindt, BA. Osborne, RA. Goldsby, 6th edition, W. H. Freeman & Company, 2006.
-Janeway's Immunobiology, KM. Murphy, P Travers, M Walport, 7 edition, Garland Science, 2007.
-Immunology: A Short Course, R. Coico, G Sunshine, 6. Edition, Wiley-Blackwell, 2009.
-Roitt's Essential Immunology, PJ Delves, SJ Martin, DR Burton, IM Roitt, 12 edition, Wiley-Blackwell, 2011."
References: 1. www.sciencedirect.com
2. www.ncb.nlm.nih.gov.tr

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Presentation 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Presentations / Seminar 2 4 8
Final 1 2 2
Total Workload 150

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and industrial engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Identify, formulate, and solve complex engineering problems; select and apply proper analysis and modeling methods for this purpose.
3) Design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose. The ability to apply modern design methods to meet this objective.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in industrial engineering practice; employ information technologies effectively.
5) Design and conduct experiments, collect data, analyze and interpret results for investigating the complex problems specific to industrial engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working independently.
7) Demonstrate effective communication skills in both oral and written English and Turkish. Writing and understanding reports, preparing design and production reports, making effective presentations, giving and receiving clear and understandable instructions.
8) Recognize the need for lifelong learning; show ability to access information, to follow developments in science and technology, and to continuously educate him/herself.
9) Develop an awareness of professional and ethical responsibility, and behaving accordingly. Information about the standards used in engineering applications.
10) Know business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Know contemporary issues and the global and societal effects of modern age engineering practices on health, environment, and safety; recognize the legal consequences of engineering solutions.
12) Develop effective and efficient managerial skills.