REKLAMCILIK | |||||
Lisans | TYYÇ: 6. Düzey | QF-EHEA: 1. Düzey | EQF-LLL: 6. Düzey |
Ders Kodu | Ders Adı | Yarıyıl | Teorik | Pratik | Kredi | AKTS |
MBG4059 | Biyoinformatikte İşlemsel Yöntemler | Bahar | 3 | 0 | 3 | 6 |
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir. |
Öğretim Dili: | English |
Dersin Türü: | Non-Departmental Elective |
Dersin Seviyesi: | LİSANS |
Dersin Veriliş Şekli: | Yüz yüze |
Dersin Koordinatörü: | Dr. Öğr. Üyesi CEMALETTİN BEKPEN |
Dersin Amacı: | Bu dersin amacı, biyoinformatikde kullanılan temel hesaplama yöntemleri ve biyoinformatikde önemli uygulamaları olup aynı zamanda biyoinformatik dışında da pek çok uygulaması olan küme algoritmalar hakkında bir anlayış kazandırmaktır. |
Bu dersi başarıyla tamamlayabilen öğrenciler; 1. Nükleik asit ve protein dizilerinin modellenmesinde faydalı olan temel hesaplama modellerini tanır. 2. Çeşitli moleküler biyoloji verisinin analizi için yararlı algoritmaları tasarlar ve uygular. 3. Genetik Algoritma ve bunun biyoinformatik uygulamalarını tartışır. 4. Açgözlü Algoritmalar ve bunun bunun biyoinformatik uygulamalarını tartışır. 5. Gibbs örneklemesi ve bunun bunun biyoinformatik uygulamalarını tartışır. 6. Beklenti Maksimizasyonu ve bunun bunun biyoinformatik uygulamalarını tanır. 7. Saklı Markov modelleri ve bunun bunun biyoinformatik uygulamalarını tanır. 8. Bayesian ağlar ve bunun bunun biyoinformatik uygulamalarını tanımlar. 9. Grafikler ve bunun bunun biyoinformatik uygulamalarını tanımlar. |
Bu ders, biyoinformatik uygulamalarda yaygın olarak kullanılan hesaplamalı yöntemler ve algoritmalar konusunda geniş bir alt yapı sağlayacaktır. Çeşitli mevcut yöntemler eleştirel olarak tarif edilecek ve her birinin güçlü ve kısıtlı yönleri ele alınacaktır. |
Hafta | Konu | Ön Hazırlık |
1) | Hesaplama karmaşıklığı ve algoritma tasarım tekniklerine kısa bir giriş | |
2) | Kesin dizi arama algoritmaları | |
3) | Rabin-Karp algoritması, örüntü eşleştirme, soneki ağaçları | |
4) | Dinamik programlama elemanları, Manhattan turist problemi, k-band algoritması | |
5) | Yaklaşık dizge eşlemesi, böl ve fethet algoritmaları | |
6) | Branch ve bound araması | |
7) | Genetik Algoritma | |
8) | Açgözlü Algoritmalar | |
9) | Gibbs örneklemesi | |
10) | Beklenti Maksimizasyonu | |
11) | Saklı Markov modelleri | |
12) | Bayesian ağlar | |
13) | Grafikler | |
14) | Tekrar |
Ders Notları / Kitaplar: | Haftalık ders notları iletilecektir. Weekly course notes will be provided. |
Diğer Kaynaklar: | An Introduction to Bioinformatics Algorithms (Computational Molecular Biology), Neil Jones and Pavel Pevzner, MIT Press, 2004. |
Yarıyıl İçi Çalışmaları | Aktivite Sayısı | Katkı Payı |
Ödev | 2 | % 10 |
Projeler | 1 | % 15 |
Ara Sınavlar | 1 | % 25 |
Final | 1 | % 50 |
Toplam | % 100 | |
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI | % 35 | |
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI | % 65 | |
Toplam | % 100 |
Aktiviteler | Aktivite Sayısı | Süre (Saat) | İş Yükü |
Ders Saati | 14 | 3 | 42 |
Sınıf Dışı Ders Çalışması | 14 | 6 | 84 |
Sunum / Seminer | 5 | 4 | 20 |
Ara Sınavlar | 1 | 2 | 2 |
Final | 1 | 2 | 2 |
Toplam İş Yükü | 150 |
Etkisi Yok | 1 En Düşük | 2 Düşük | 3 Orta | 4 Yüksek | 5 En Yüksek |
Dersin Program Kazanımlarına Etkisi | Katkı Payı | |
1) | Stratejik düşünme, profesyonel yazım, etik uygulamalar ve geleneksel ve yeni medyanın yenilikçi kullanımına odaklanarak öğrencileri iletişim profesyonelleri olmak üzere hazırlamak | 2 |
2) | Reklamcılık, İkna Edici İletişim, Marka Yönetimi gibi alanlardaki olguların ve gerçeklerin arasındaki ilişki ile ilgili problemleri açıklayabilmek ve tanımlayabilmek | |
3) | Reklamcılık alanındaki teorileri, kavramları, yöntemleri, araçları ve düşünceleri eleştirel olarak tartışabilmek ve yorumlayabilmek | |
4) | Reklamcılık alanındaki yenilikleri takip edebilmek ve yorumlayabilmek | |
5) | Alanda merak ettikleri konu doğrultusunda bilimsel bir bakış açısı sergileyebilmek | |
6) | Geliştirdikleri bilimsel bakış açısı ile alanın ihtiyaçlarını ve sorunlarını çözebilmek | |
7) | Reklamcılık alanında yer alan tüm dinamikleri tanımak ve anlamak | |
8) | Pratik alanda reklamcılık açısından karşılaşılan sorunları analiz ederek, çözümler üretebilmek |