MBG4059 Computational Methods in BioinformaticsBahçeşehir UniversityDegree Programs ECONOMICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ECONOMICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4059 Computational Methods in Bioinformatics Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: The goal of this course is to provide an understanding of the fundamental computational methods used in bioinformatics and the set of algorithms that have important applications both inside and outside of the bioinformatics field.

Learning Outcomes

The students who have succeeded in this course;
1. Recognize the fundamental models of computation useful in modeling nucleic acid and protein sequences.
2. Design and implement algorithms useful for analyzing various molecular biology data.
3. Discuss Genetic Algorithm and its applications in bioinformatics.
4. Discuss Greedy Algorithms and its applications in bioinformatics.
5. Discuss Gibbs sampling and its applications in bioinformatics.
6. Recognize Expectation Maximization and its applications in bioinformatics.
7. Recognize Hidden Markov models and its applications in bioinformatics.
8. Define Bayesian networks and its applications in bioinformatics.
9. Define graphs and its applications in bioinformatics.

Course Content

This course will provide a broad and thorough background in computational methods and algorithms that are widely used in bioinformatics applications. Various existing methods will be critically described and the strengths and limitations of each will be discussed.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) A brief introduction to computational complexity and algorithm design techniques
2) Exact sequence search algorithms
3) Rabin-Karp algorithm, pattern matching, suffix trees
4) Elements of dynamic programming, Manhattan tourist problem, k-band algorithm
5) Approximate string matching, divide and conquer algorithms
6) Branch and bound search
7) Genetic Algorithm
8) Greedy Algorithms
9) Gibbs sampling
10) Expectation Maximization
11) Hidden Markov models
12) Bayesian networks
13) Graphs
14) Review

Sources

Course Notes / Textbooks: Haftalık ders notları iletilecektir.
Weekly course notes will be provided.
References: An Introduction to Bioinformatics Algorithms (Computational Molecular Biology), Neil Jones and Pavel Pevzner, MIT Press, 2004.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 2 % 10
Project 1 % 15
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 35
PERCENTAGE OF FINAL WORK % 65
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 6 84
Presentations / Seminar 5 4 20
Midterms 1 2 2
Final 1 2 2
Total Workload 150

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) As a world citizen, she is aware of global economic, political, social and ecological developments and trends. 
2) He/she is equipped to closely follow the technological progress required by global and local dynamics and to continue learning.
3) Absorbs basic economic principles and analysis methods and uses them to evaluate daily events. 
4) Uses quantitative and statistical tools to identify economic problems, analyze them, and share their findings with relevant stakeholders. 
5) Understands the decision-making stages of economic units under existing constraints and incentives, examines the interactions and possible future effects of these decisions.
6) Comprehends new ways of doing business using digital technologies. and new market structures. 
7) Takes critical approach to economic and social problems and develops analytical solutions.
8) Has the necessary mathematical equipment to produce analytical solutions and use quantitative research methods.
9) In the works he/she contributes, observes individual and social welfare together and with an ethical perspective.  
10) Deals with economic problems with an interdisciplinary approach and seeks solutions by making use of different disciplines. 
11) Generates original and innovative ideas in the works she/he contributes as part of a team.