MBG4057 Special Topics in BioinformaticsBahçeşehir UniversityDegree Programs ARCHITECTUREGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ARCHITECTURE
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4057 Special Topics in Bioinformatics Spring
Fall
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: This course aims to discuss technical papers from the recent bioinformatics literature, examine their algorithms and conduct an intensive study on a specific bioinformatics problem.

Learning Outcomes

The students who have succeeded in this course;
1. Define the open research questions in bioinformatics.
2. Discuss current solutions to tackle bioinformatics problems.
3. Develop an ability to discuss open research issues in computational biology.
4. Acquire an understanding of existing bioinformatics solutions for genomics.
5. Acquire an understanding of existing bioinformatics solutions for proteomics.
6. Develop an ability to focus on several bioinformatics articles and present their findings.
7. Obtain a familiarity with emerging topics in bioinformatics.
8. Obtain a familiarity with emerging topics in computational biology.
9. Develop an ability to find, read and discuss scientific articles published in the bioinformatics field.

Course Content

This discussion-based bioinformatics course will expose students to the latest developments in bioinformatics analyses and algorithms.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Genomics (genome sequencing, storage and study of genome information, genome databases)
2) Genomics (polymorphism in the human genome and association with diseases)
3) Comparative genomics (genome subtraction method, whole-genome alignment methods, genome-context methods, gene-fusion method)
4) Structural genomics (the scientific program of structural genomics, target selection in structural genomics)
5) Functional genomics (integration of experimental and computational methods)
6) Functional genomics (gene-expression data and DNA micro-arrays)
7) Functional genomics (regulatory networks, protein-protein interaction networks)
8) Proteomics, Protein folding and fold recognition
9) Epigenomics
10) Cancer informatics
11) Non-coding RNA identification and search
12) Emerging topics in bioinformatics
13) Emerging topics in computational biology
14) Presentations

Sources

Course Notes / Textbooks: Haftalık ders notları iletilecektir.
Course notes will be supplied.
References: Articles from the primary literature (scientific journals, e.g. Nature Reviews Genetics, Nature, Science, Genome Research, Nature Genetics, Nature Methods, Bioinformatics, Molecular Systems Biology etc.)

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 2 % 15
Project 1 % 25
Midterms 1 % 10
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 25
PERCENTAGE OF FINAL WORK % 75
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Midterms 1 2 2
Final 1 2 2
Total Workload 158

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Using the theoretical/conceptual and practical knowledge acquired for architectural design, design activities and research.
2) Identifying, defining and effectively discussing aesthetic, functional and structural requirements for solving design problems using critical thinking methods.
3) Being aware of the diversity of social patterns and user needs, values and behavioral norms, which are important inputs in the formation of the built environment, at local, regional, national and international scales.
4) Gaining knowledge and skills about architectural design methods that are focused on people and society, sensitive to natural and built environment in the field of architecture.
5) Gaining skills to understand the relationship between architecture and other disciplines, to be able to cooperate, to develop comprehensive projects; to take responsibility in independent studies and group work.
6) Giving importance to the protection of natural and cultural values in the design of the built environment by being aware of the responsibilities in terms of human rights and social interests.
7) Giving importance to sustainability in the solution of design problems and the use of natural and artificial resources by considering the social, cultural and environmental issues of architecture.
8) Being able to convey and communicate all kinds of conceptual and practical thoughts related to the field of architecture by using written, verbal and visual media and information technologies.
9) Gaining the ability to understand and use technical information about building technology such as structural systems, building materials, building service systems, construction systems, life safety.
10) Being aware of legal and ethical responsibilities in design and application processes.