MBG4054 EcologyBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4054 Ecology Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: The objective of this course is to introduce the fundamental concepts that define the field of ecology and to provide major ideas shaping modern ecology.

Learning Outcomes

The students who have succeeded in this course;
1. Define the fundamental concepts of ecology.
2. Discuss the ideas that shape modern ecology.
3. Discuss the models that describe ecological systems.
4. Analyze in reading, discussing, and synthesizing primary literature in ecology.
5. Discuss the impacts and importance of ecology on earth.
6. Discuss the significance of evolution, biodiversity and ecology.

Course Content

The interaction of organisms with their biological and physical environments, ecosystem concepts, environmental requirements of organisms, limiting factors, energy cycles in ecological systems, biogeochemical cycles, and principles of population ecology and community ecology.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Ecology as a science; The Ecology-Evolution interaction
2) The physical environment
3) The organism and its environment/ Adaptations
4) Populations I
5) Populations II
6) Species interactions I
7) Species interactions II
8) Overview
9) Community ecology I
10) Community ecology II
11) Ecosystem ecology
12) Biogeographical ecology
13) Human ecology I
14) Human ecology II

Sources

Course Notes / Textbooks: Course notes will be supplied.
Elements of Ecology,Thomas M. Smith and Robert Leo Smith, 8th Edition, Benjamin Cummings, 2012 (ISBN 13: 9780321736079)
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 1 % 5
Presentation 1 % 20
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 8 112
Presentations / Seminar 1 2 2
Midterms 1 2 2
Final 1 2 2
Total Workload 160

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.