Language of instruction: |
English |
Type of course: |
Non-Departmental Elective |
Course Level: |
Bachelor’s Degree (First Cycle)
|
Mode of Delivery: |
Face to face
|
Course Coordinator : |
Assist. Prof. MERVE SEVEN |
Recommended Optional Program Components: |
There is none. |
Course Objectives: |
The aim of the course is to introduce basic concepts in plant biology and plant genetics. Information is given about plant cell types, plant tissues and different plant organs. Thus, knowledge about plant physiology as a whole is gained. The fundamentals of photosynthesis and nutrient cycles, which are important in the metabolism of plants, are comprehensively described. Then, plant genomes, mitochondria and chloroplast genomes structures are introduced and gene transfer, mobile genetic elements and epigenetics are processed in plants. |
|
Program Outcomes |
Level of Contribution |
1) |
Be able to specify functional and non-functional attributes of software projects, processes and products. |
|
2) |
Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems. |
|
3) |
Be able to develop a complex software system with in terms of code development, verification, testing and debugging. |
|
4) |
Be able to verify software by testing its program behavior through expected results for a complex engineering problem. |
|
5) |
Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation. |
|
6) |
Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically. |
|
7) |
Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams. |
|
8) |
Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems. |
|
9) |
Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system. |
|
10) |
Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities. |
4 |
11) |
Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life. |
3 |
12) |
Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions. |
|
13) |
Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions. |
3 |