COP4454 Introduction to Game Development with CryEngineBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
COP4454 Introduction to Game Development with CryEngine Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi CEMAL OKAN ŞAKAR
Course Lecturer(s): Dr. Öğr. Üyesi GÜVEN ÇATAK
Course Objectives: This hands-on course teaches students the technical elements that make a video game and how to use CRYENGINE to implement them.

Learning Outcomes

The students who have succeeded in this course;
1. Illustrate an understanding of the concepts behind game programming techniques.
2. Implement game programming techniques to solve game development tasks.
3. Build familiarity and appreciation of the programmatic components of an industry standard game development engine.

Course Content

This course is intended for 4th-year Computer and Software Engineering students. This subject introduces the fundamentals of programming 3D games in CRYENGINE. This subject aims to build student familiarity with the API library of CRYENGINE as well as give students an appreciation of the technology and algorithms that form those engines.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Installing Cryengine, Overview of Cryengine, Creating, Saving, Loading Projects
2) Introduction to CryEngine DLLs, Explanation of the Flowgraph system and Flowgraph Editor, Simple Scripting with Flow Graph
3) Basic creation of a Flownode in C++, Explanation of the Entity system, Creation of a new type of Entity
4) Explanation of the GameFramework, Controlling Entity game state via the GameFramework event listeners
5) Adding Enemies, Gameplay Triggers & Callbacks
6) Physics & Collisions, Using RNG
7) Detecting the Win Condition, Adjusting Game Menu, Input Methods
8) Using Particles, Playing Sounds, Feature testing with Cvars
9) Handling Complex 3D Objects, Animation Tools
10) Camera Control, Extending the menu through Flow graph
11) Cleaning up the Project, Creating a Game Build
12) Advanced AI Concepts
13) Materials and Shaders
14) VR – Best Practices and Optimisation, VR – API Concepts

Sources

Course Notes / Textbooks: CryENGINE Game Programming with C++, C#, and Lua, ISBN-10: 1849695903
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 3 % 30
Project 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 25 25
Homework Assignments 3 15 45
Final 1 30 30
Total Workload 142

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.