COP4454 Introduction to Game Development with CryEngineBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
COP4454 Introduction to Game Development with CryEngine Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi CEMAL OKAN ŞAKAR
Course Lecturer(s): Dr. Öğr. Üyesi GÜVEN ÇATAK
Course Objectives: This hands-on course teaches students the technical elements that make a video game and how to use CRYENGINE to implement them.

Learning Outcomes

The students who have succeeded in this course;
1. Illustrate an understanding of the concepts behind game programming techniques.
2. Implement game programming techniques to solve game development tasks.
3. Build familiarity and appreciation of the programmatic components of an industry standard game development engine.

Course Content

This course is intended for 4th-year Computer and Software Engineering students. This subject introduces the fundamentals of programming 3D games in CRYENGINE. This subject aims to build student familiarity with the API library of CRYENGINE as well as give students an appreciation of the technology and algorithms that form those engines.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Installing Cryengine, Overview of Cryengine, Creating, Saving, Loading Projects
2) Introduction to CryEngine DLLs, Explanation of the Flowgraph system and Flowgraph Editor, Simple Scripting with Flow Graph
3) Basic creation of a Flownode in C++, Explanation of the Entity system, Creation of a new type of Entity
4) Explanation of the GameFramework, Controlling Entity game state via the GameFramework event listeners
5) Adding Enemies, Gameplay Triggers & Callbacks
6) Physics & Collisions, Using RNG
7) Detecting the Win Condition, Adjusting Game Menu, Input Methods
8) Using Particles, Playing Sounds, Feature testing with Cvars
9) Handling Complex 3D Objects, Animation Tools
10) Camera Control, Extending the menu through Flow graph
11) Cleaning up the Project, Creating a Game Build
12) Advanced AI Concepts
13) Materials and Shaders
14) VR – Best Practices and Optimisation, VR – API Concepts

Sources

Course Notes / Textbooks: CryENGINE Game Programming with C++, C#, and Lua, ISBN-10: 1849695903
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 3 % 30
Project 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 25 25
Homework Assignments 3 15 45
Final 1 30 30
Total Workload 142

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.