TLT2007 Immunology LaboratoryBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
TLT2007 Immunology Laboratory Spring 2 0 2 3
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Instructor ZEYNEP GÜL
Course Lecturer(s): Instructor ZEYNEP GÜL
Recommended Optional Program Components: Laboratory
Course Objectives: The working principle of the human immune system and applied in medical laboratories the introduction of serological tests To teach the principles and practices.

Learning Outcomes

The students who have succeeded in this course;
At the end of this course the student;
1 monoclonal antibody technology and applications in the lab knows.
2 Kemilüminesan used in areas where you know and work with biyoanalizör.
3 types of FA and knows the basic principles of the method, the laboratory will use the system.
4 types of IUD and knows the basic principles of the method, the laboratory will use the system.
5 ELISA method kind of know the basic principles and laboratory systems
uses.
6 Immunological methods are able to learn basic information about the devices and the basic manual
uses.

Course Content

ELISA method, RIA, IFA method, monoclonal antibody technology, cellular immunity

Weekly Detailed Course Contents

Week Subject Related Preparation
1) The basic principles of immune None
2) Humoral immunity None
3) Humoral immunity None
4) Agglutination based methods None
5) Methods based on precipitation None
6) ELISA method None
7) RIA Method None
8) IFA Method None
9) Monoclonal antibody technology None
10) Monoclonal antibody technology None
11) chemiluminescence immunoassay method in None
12) Flow cytometry None
13) Education ELISA I (preparation kit) ELISA applications I None
14) Education ELISA II (Washer use) ELISA applications II None

Sources

Course Notes / Textbooks: Ders notları haftalık verilecektir.
Course contens will be delived weekly.
References: İnternet Internet

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 1 % 10
Homework Assignments 1 % 10
Midterms 1 % 20
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 10 3 30
Homework Assignments 1 14 14
Midterms 1 1 1
Final 1 2 2
Total Workload 75

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.