ANZ2009 ToxicologyBahçeşehir UniversityDegree Programs INDUSTRIAL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
INDUSTRIAL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ANZ2009 Toxicology Fall
Spring
2 0 2 3
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Neslihan Bektaş
Course Lecturer(s): Instructor FIRAT KARA
Recommended Optional Program Components: Anestesia Center
Course Objectives: Live as a result of the continuous development of science and technology communities to the risk of toxic substances, poisoning and related illnesses to provide information about the formation.

Learning Outcomes

The students who have succeeded in this course;
The students who successfully complete this course;

1 Toxicology history, development, principles will have detailed information about,
2 types of intoxication, will have detailed information about the effects of poisoning,
3 of poisoning and toxicity assays will have detailed information about,
4 will have detailed information on the toxicokinetics of poisons,
5 Bacterial toxins, animal toxins, mycotoxins and pesticides have knowledge about.

Course Content

Toxicology definition and importance, poison and poisoning concept, the poison of the access roads, mechanism of action, Pesticides, toxic gases and vapors, organic solvents, metallic poisons, radiation and radioisotopes, mycotoxins, food poisoning, bacterial toxins, plant toxins and animal poisons that course content constitute.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Toxicology, Toxicology Information About None
2) Definition and Classification of Toxicology None
3) toxication None
4) Mechanism of action of toxins I None
5) Mechanism of action of toxins II None
6) Toxicity Tests None
7) Food Sources of Toxic Substances I None
8) Food Sources of Toxic Substances II None
9) Contaminants I None
10) Contaminants II None
11) Food Additives I None
12) Food Additives II None
13) Chemical Preservatives in Food I None
14) Chemical Preservatives in Food II None

Sources

Course Notes / Textbooks: Altuğ, Tomris, 2003. Introduction to Toxicology and Food, CRC Press, New York, USA.
References: Vural N, Toksikoloji, Ankara Ü. Eczacılık Fak. Yay. No: 73, Ankara, 2005, 659 s.
Şanlı Y, Veteriner Klinik Toksikoloji, Medipres, Ankara, 2002, 808 s

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 14 3 42
Quizzes 1 2 2
Midterms 1 1 1
Final 1 2 2
Total Workload 75

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and industrial engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Identify, formulate, and solve complex engineering problems; select and apply proper analysis and modeling methods for this purpose.
3) Design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose. The ability to apply modern design methods to meet this objective.
4) Devise, select, and use modern techniques and tools needed for solving complex problems in industrial engineering practice; employ information technologies effectively.
5) Design and conduct experiments, collect data, analyze and interpret results for investigating the complex problems specific to industrial engineering.
6) Cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working independently.
7) Demonstrate effective communication skills in both oral and written English and Turkish. Writing and understanding reports, preparing design and production reports, making effective presentations, giving and receiving clear and understandable instructions.
8) Recognize the need for lifelong learning; show ability to access information, to follow developments in science and technology, and to continuously educate him/herself.
9) Develop an awareness of professional and ethical responsibility, and behaving accordingly. Information about the standards used in engineering applications.
10) Know business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Know contemporary issues and the global and societal effects of modern age engineering practices on health, environment, and safety; recognize the legal consequences of engineering solutions.
12) Develop effective and efficient managerial skills.