ANZ2009 ToxicologyBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ANZ2009 Toxicology Spring 2 0 2 3
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Neslihan Bektaş
Course Lecturer(s): Instructor FIRAT KARA
Recommended Optional Program Components: Anestesia Center
Course Objectives: Live as a result of the continuous development of science and technology communities to the risk of toxic substances, poisoning and related illnesses to provide information about the formation.

Learning Outcomes

The students who have succeeded in this course;
The students who successfully complete this course;

1 Toxicology history, development, principles will have detailed information about,
2 types of intoxication, will have detailed information about the effects of poisoning,
3 of poisoning and toxicity assays will have detailed information about,
4 will have detailed information on the toxicokinetics of poisons,
5 Bacterial toxins, animal toxins, mycotoxins and pesticides have knowledge about.

Course Content

Toxicology definition and importance, poison and poisoning concept, the poison of the access roads, mechanism of action, Pesticides, toxic gases and vapors, organic solvents, metallic poisons, radiation and radioisotopes, mycotoxins, food poisoning, bacterial toxins, plant toxins and animal poisons that course content constitute.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Toxicology, Toxicology Information About None
2) Definition and Classification of Toxicology None
3) toxication None
4) Mechanism of action of toxins I None
5) Mechanism of action of toxins II None
6) Toxicity Tests None
7) Food Sources of Toxic Substances I None
8) Food Sources of Toxic Substances II None
9) Contaminants I None
10) Contaminants II None
11) Food Additives I None
12) Food Additives II None
13) Chemical Preservatives in Food I None
14) Chemical Preservatives in Food II None

Sources

Course Notes / Textbooks: Altuğ, Tomris, 2003. Introduction to Toxicology and Food, CRC Press, New York, USA.
References: Vural N, Toksikoloji, Ankara Ü. Eczacılık Fak. Yay. No: 73, Ankara, 2005, 659 s.
Şanlı Y, Veteriner Klinik Toksikoloji, Medipres, Ankara, 2002, 808 s

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 14 3 42
Quizzes 1 2 2
Midterms 1 1 1
Final 1 2 2
Total Workload 75

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.