VCD3113 3D ModellingBahçeşehir UniversityDegree Programs COMPUTER ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
COMPUTER ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
VCD3113 3D Modelling Spring 2 2 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery:
Course Coordinator : Dr. Öğr. Üyesi İPEK TORUN
Course Lecturer(s): Instructor CAN PEKDEMİR
Prof. Dr. HASAN KEMAL SUHER
Recommended Optional Program Components: None
Course Objectives: The aim of this course is to make an introduction to 3D modelling and computer animation world and to give a basic understanding of “how it works” in 3D animatio. Students will be informed about terms and techniques of 3D modelling and learn to use a 3D software. The relation of 3D modelling between sculpture, painting, architecture, computer games, cinema, music will also be explained in this course.

Learning Outcomes

The students who have succeeded in this course;
I. To gain an understanding about virtual 3D environment.
II. Practice skills of 3D modelling and texture mapping.
III. Practice skills of basic animation in 3D environment.
IV. Learn to use one of the industry standard 3D softwares.

Course Content

Weekly Detailed Course Contents

Week Subject Related Preparation
1) 1. Week : Introduction to 3D modelling (Basic concepts of 3D modelling and general information about softwares)
2) 2.Week : Starting with 2d shapes
3) 3.Week : Transforming to 3d meshes
4) 4.Week : Polygon modelling 1(objects)
5) 5.Week : Mid term 1
6) 6.Week : Polygon modelling 2(organic)
7) 7.Week : Materials / Shaders
8) 8.Week : Basic Mapping 1
9) 9.Week : Mapping 2
10) 10.Week : Mid Term 2
11) 11.Week : How to create a texture in Photoshop.
12) 12.Week : Introduction to Animation (Basic concepts of 3D animation and general information about softwares)
13) 13.Week : First Animation: Bouncing ball
14) Review

Sources

Course Notes / Textbooks:
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Midterms 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Homework Assignments 11 60
Final 3 24
Total Workload 126

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and computer engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose. 2
3) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. 3
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or computer engineering research topics. 3
6) Ability to work effectively within and multi-disciplinary teams; individual study skills. 2
7) Ability to communicate effectively in verbal and written Turkish; knowledge of at least one foreign language; ability to write active reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously.
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in engineering; awareness of the legal consequences of engineering solutions.